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Abstract

The relative magnitudes are compared of successive terms in a higher-order asymptotic
expansion of the bias of the LSDV estimator in dynamic panels. We find that the leading
term accounts for the major part of the actual bias in small samples. This implies that bias
correction procedures can be based on relatively simple bias approximation formulas.

1. Introduction

For dynamic panel data models the inconsistency of the LSDV (least-squares with dummy vari-
ables or within groups) estimator for finite 7' (number of time-series observations) and large N
(number of cross-section units) is a well established fact. Nickell (1981) derived for the strongly
stationary panel AR(1) model an analytical expression for the inconsistency for N — oo of LSDV
which is an expression involving terms in powers of 7~!. He also presents a similar but less explicit
result for the first-order dynamic panel data model with exogenous regressors. However, Nickell
did not consider any terms that contribute to the LSDV bias which are of order N~!, which
may be substantial in samples where N is small. Some of these are considered in Kiviet (1995),
where an explicit asymptotic approximation formula has been obtained for the finite sample bias
of the LSDV estimator in the first-order dynamic panel data model with additional exogenous
regressors. That study also examined by simulation its accuracy and effectiveness with respect
to improving estimator efficiency by bias correction. In Kiviet (1999) the approximation formula
has been slightly extended by taking a particular further higher-order term into account, but
the actual performance of this refinement has not been examined yet. Here, we will analyze and
compare by simulation the accuracy of these various bias approximations in small samples for the
first-order dynamic panel data model with no, or just one, additional exogenous regressor.

2. Approximations of the LSDV bias

We consider the standard linear first-order! dynamic panel data model

Vit = VWir—1 + Bzt + 0, + cit, i=1,.,N; t=1,..,T. (2.1)

*Tinbergen Institute & Faculty of Economics and Econometrics, Universiteit van Amsterdam, Roeterstraat 11,
1018 WB Amsterdam, The Netherlands (M.J.G.Bun@UvA.NL and J.F.Kiviet@QUvA.NL); phone +31.20.5254217,
fax +31.20.5254349.

'For ease of exposition we restrict ourselves to the first-order dynamic panel data model, but all results can be
extended to higher-order dynamic models.



In this model the dependent variable y;; is regressed on a vector of K exogenous explanatory
variables x;; and the one period lagged value of the dependent variable. The composite disturbance
term 7, +¢;; consists of an unobserved individual specific effect n,, which is either fixed or random,
and a white noise error term ¢;; with variance (r?. Stacking the observations over time and across
individuals one gets

y=Wé+ Iy ®@tr)n+e, (2.2)

where § = (v,0), y and W = (y_1,X) are NT x 1 and NT x (K + 1) matrices of stacked
observations, € is the NT x 1 vector of disturbances and ¢ty = (1,...,1)" a T x 1 vector of ones.

Estimation of the N + K + 1 coefficients (&,7)" of (2.2) by ordinary least squares yields?
regarding 0

R /
Srspv = (WAW) 1WAy = 6 + (W' AW) ( vorde ) ) (2.3)

where the NT x NT matrix A = Iy ® (It — %LTL{F) is the within transformation which wipes
out the individual effects. This procedure is valid for both fixed and random effects. In case of
random effects it is especially useful in case of non-zero correlation between the effects and the
time varying regressors. Although strict exogeneity of the regressors X implies E(X'Ae) = 0, we
have plim %W’ Ae # 0, since it can be shown that plim %yQ 1Ae # 0 for T finite. Therefore,

N—o0 N—o0
) Lspv 1s inconsistent for N — oo and T finite.

Nickell (1981) examines the bias of the LSDV estimator for N — oo, which is of order O(T1).
However, in finite samples where both IV and T" are moderate or small additional bias terms may
play a major role as well®. Kiviet (1995) derives an approximation formula for the bias of the
LSDV estimator in the normal stationary dynamic panel data model with a strictly exogenous
regressor matrix X while conditioning on start-up values (v1, ..., vno) from which the accumulated
individual effects have been removed, i.e. v;p = yi0 —7;/(1 — ). The resulting expression includes
all O(N~1T~1) contributions to the bias and has an approximation error which has a magnitude
of order O(N~1) and of order O(T2) at the same time. In Kiviet (1999) this analysis has been
extended and an approximation to the bias is produced which is not only accurate to order O(T~1)
again, but now it is accurate to order O(N 1) as well, yielding

E(orspy —6) = ci(T™H) + co(N7IT7™Y) + e3(NTI1T72) + O(NT2T72), (2.4)
where
a(Tl) = QEW'As)=0(T 1)
(N ITY) = —QE(WAW —Q HQ[W'Ae —E(W'Ae) = O(N T 1)
a(NT'T7?) = —QE{[(W'AW —Q "QIP}E(W'Ae) = O(N~'T?),
with
Q = [EWAW) ! = [WAW + o2tr(Il')e )]t
W = E(W)

e; = (1,0,...,0)" has K + 1 elements
II = ALD, T=Iy®Typ, I'p=(Ip —yLy)~', L=1Iy ® Ly,

%It is assumed that all the explanatory variables are time variant so that W’ AW is invertible.
33ome general background to this type of bias approximation in the context of dynamic panel data models can
be found in Beggs and Nerlove (1988).



where the T' x T" matrix Ly has ones on its first lower subdiagonal and all other elements equal
to zero. Using the shorthand notation ¢; = Qe; and ¢11 = €} q1 and following the derivations as
presented in the papers referred to above, one obtains

a(Th = g (2.5)
co(N7IT™Y) = —QE(WAWQW'Ae) + QE(W' A¢)
= —[QW'TIAW + tr(QW'TIAW ) I 11 + 202quitr(TVTI) I 1) qu
c3(NTIT2) = QE(W'AWQW'AW)QE(W'Ae) — QE(W' Ag) (2.7)

odtr (I {2q11 QW'TIIT'W 4
+H(AW'TIIT'W qy) + quutr(QW'TIIT'W) + 2tr(IVTII') g% g1 }.-

In Kiviet (1995) only the first two terms (2.5) and (2.6) have been taken into account, so the
approximation error is still O(N~'T72). The more general result with approximation error of
order O(N—2T2) can already be found in Kiviet (1999) but here the expressions are simpler due
to removing factors W’/ AW by exploiting W/ AW = Q~! — o2tr(I') ey €}

Below we shall examine the three bias approximations

By =ci(T™Y), Ba=B;+c(N'T™), Bsy=DBy+c3(N'T7?), (2.8)

by comparing them with the true bias as obtained from Monte Carlo simulations. The simulation
design is basically the same as in Kiviet (1995), which has also been used by Judson and Owen
(1999). Data for y have been generated according to equation (2.1) with K = 1. The generating
equation for the explanatory variable x is

Tit = pTir—1 + &, i=1,.,.N; t=1,...T, (2.9)

where &;; ~ ||N(O,(f§). The long-run effect 3/(1 — ) of x on y has been set equal to unity
in all experiments. This implies that the impact multiplier 3 varies with the chosen values for
7. The variance of the disturbance term o2 is set at the value of one. The parameter o¢ has
been determined by controlling the signal-to-noise ratio 02 of the model, see Kiviet (1995). The
following three sample sizes have been analyzed: T = N = 20; T = 10, N = 40 and T = 40,
N = 10. Two values for v and p, viz. 0.2 and 0.8, are considered together with o2 = {2,9}, which
corresponds with a population R? equal to % and % respectively. Hence, for the three chosen
sample sizes we consider 8 different designs?.

In Table 2.1 we compare the bias approximations (2.8), calculated at the true parameter
values, with the actual LSDV bias as estimated from 10,000 Monte Carlo replications. Columns 1
to 5 indicate the various parametrizations, while columns 6 and 10 show the actual LSDV bias in
estimating v and (3 respectively. Regarding finite sample bias we observe the following patterns
in the simulation results. The absolute value of the bias in estimating - increases with both
and p, hence more persistence in the processes for y and x leads to larger finite sample bias. For
all the chosen parametrizations we find a negative finite sample bias in estimating -, which is
serious in relative terms especially when « is small. The bias in estimating (3 increases with p,
but not with . Hence, more persistence in the process for  complicates accurate estimation of
B. On the whole, however, the bias in estimating 3 seems less serious than in estimating . We
find that the magnitude of the finite sample bias depends heavily on the dimensions 7" and N. In
general, bias decreases as T increases, which is not surprising as the leading term of the LSDV
bias is of order O(T~!). Seriousness of bias is inversely related with the signal-to-noise ratio.

Columns 7 to 9 and columns 11 to 13 of Table 2.1 show the numerical values of the bias
approximations (2.8), labelled B, and Bjz (j = 1,2,3) respectively. We find that adding

4The reported simulation results are a selection of a wider range of parametrizations examined.



Table 2.1: Actual LSDV bias and bias approximations

N

o, T N v p Biasy By Byy By, BiasB Big Bapg  Bsp

2 10 40 0.2 0.2 -0.045 -0.044 -0.045 -0.045 0.002 0.002 0.002 0.002
0.8 -0.077 -0.076 -0.077 -0.077 0.039 0.038 0.039 0.039

0.8 0.2 -0.207 -0.204 -0.204 -0.207 -0.008 -0.008 -0.008 -0.008

0.8 -0.216 -0.212 -0.213 -0.216 0.024 0.024 0.024 0.024

20 20 0.2 0.2 -0.023 -0.022 -0.022 -0.022 0.002 0.002 0.002 0.002
0.8 -0.039 -0.036 -0.038 -0.038 0.024 0.023 0.024 0.024

0.8 0.2 -0.101 -0.097 -0.099 -0.101 -0.001 -0.001 -0.001 -0.001

0.8 -0.106 -0.101 -0.104 -0.106 0.023 0.022 0.023 0.024

40 10 02 02 -0.011 -0.011 -0.011 -0.011 0.002 0.001 0.002 0.002
0.8 -0.020 -0.018 -0.020 -0.020 0.014 0.013 0.014 0.014

0.8 0.2 -0.050 -0.046 -0.049 -0.050 0.001  0.001 0.001 0.001

0.8 -0.053 -0.047 -0.052 -0.053 0.017  0.015 0.017 0.017

9 10 40 0.2 02 -0.014 -0.014 -0.014 -0.014 0.001  0.001 0.001 0.001
0.8 -0.033 -0.032 -0.032 -0.033 0.017 0.016 0.017 0.017

0.8 0.2 -0.067 -0.067 -0.067 -0.067 -0.003 -0.003 -0.003 -0.003

0.8 -0.112 -0.110 -0.110 -0.111 0.012 0.012 0.012 0.012

20 20 0.2 0.2 -0.00r -0.007 -0.007 -0.007 0.001  0.001 0.001 0.001
0.8 -0.016 -0.015 -0.016 -0.016 0.010 0.009 0.010 0.010

0.8 0.2 -0.032 -0.030 -0.031 -0.031 -0.000 -0.000 -0.000 -0.000

0.8  -0.048 -0.045 -0.047 -0.048 0.011  0.010 0.011 0.011

40 10 0.2 0.2 -0.003 -0.003 -0.003 -0.003 0.000  0.000 0.000 0.000
0.8 -0.008 -0.007 -0.008 -0.008 0.006 0.005 0.006 0.006

0.8 0.2 -0.015 -0.014 -0.015 -0.015 0.000  0.000 0.000 0.000

0.8 -0.022 -0.020 -0.022 -0.022 0.007  0.006 0.007 0.007

Bj,yand Bj g (j=1,2,3) are based on (2.8)

higher-order terms improves the approximations, with B3 almost corresponding to the true bias.
However, the successive higher-order terms lead to improvements of diminishing significance.
In fact, the leading term B; comprises already around 90% of the true bias or more. Further
contributions to the bias, which are O(N~!T~1) and O(N~1T~2), are generally found to lead to
improvements, but these are minor.

3. Special results for the panel AR(1) model

For a special case of model (2.1), viz. the AR(1) panel data model with K = 0, a further
decomposition of the leading term o2tr(I)q; of the expansion is possible. Here we have W = §_

and thus Q = ¢1 = qu1 = [§_ 1 Ay—1 + aztr(H’H)]fl , where

A N [1=97 1<1_7T)2 0
Y 1Ay = z; Yio 1— 2 T (1— 7)2 =O(NT")
and NT
tr(I'TI) = e +O(NTY).

So we have q7' = (r?% + O(NTY). With

___ N _NA-9T)
tr(Il) = 1_7-1— (1)




this gives

T
2tr(I)q = ——— il +0(T™?) (3.1)
Tt T T1—+ ' '

This corresponds — to the order of the approximation — with Nickell’s (1981) formula (18), which
has been derived for the strongly stationary model with fully random start-up values. Although
approximation (3.1) is of order O(T1), it contains contributions of order o(T~!) too. Its first
term is the "pure” O(T~!) bias. The approximation to the LSDV bias

en (1) =~ (1+7) (32)
is an extremely simple one, which may work well for moderately large N and T, because the
"pure” O(T~!) contribution to the bias has been separated here from O(T~2) and O(N~!1T—1)
contributions, together constituting a hybrid remainder term. Note that also in this simple panel
AR(1) model the bias terms ¢, (h = 1,2,3) depend not only on vy and T, but also on N and the
conditioning start-up values v; g.

Figure 3.1 shows the actual bias in estimating ~ for values of v ranging from -0.99 to 0.99 for
the selected sample dimensions 1" and N. Finite sample bias in estimating - is generally negative
and in absolute value increasing in 7. Figure 3.2 shows the difference of the actual finite sample
bias with three different bias approximations, viz. Bi; = c11(T~!), By and Bs as defined in (2.8).
The decomposition of the bias approximation in terms of different orders in 7" and N shows that
the pure O(T~!) bias approximation accounts already for the major part of the finite sample
bias, especially for low values of v. However, when T is small or moderate Bj; is inaccurate
especially for large positive values of 7. Keeping into the approximation the contributions which
are o(T~1), but which are still O(N?) at the same time, becomes profitable in this part of the
parameter space. The contributions to the bias which are O(N~1T~1) and O(N~1T~2) are found
to be of very limited actual magnitude for all values of «, T" and N. Hence, B; and Bs are almost
similar for the panel AR(1) model.

Figure 3.1: Actual bias as a function of v and (7, N)
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Figure 3.2: Actual bias minus bias approximation as a function of
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4. Concluding remarks

In this study the accuracy of various analytical approximations for the finite sample bias of the
LSDV coefficient estimator for dynamic panel data models have been analyzed through Monte
Carlo experiments. The simulation results show that such approximations can be very accurate
for a wide range of parametrizations. Adding an extra term to the approximation formula for the
bias of the LSDV estimator, as derived in Kiviet (1999), does not improve the bias approximation
substantially. In fact, the present results indicate that including O(T~!) and o(T!) terms, i.e. all
the O(N") terms, and omitting the O(N~17T1) contributions accounts for most of the bias in the
LSDV estimator when N7T' > 400 and N > 10. These findings are useful for developing corrected
estimators, which exploit bias approximations to mitigate bias and to increase efficiency. When
both N and T are two digit numbers it seems appropriate to base these bias corrections simply
on an estimate of By, i.e. the O(N°T~!) terms, especially in the panel AR(1) model. Invoking
higher-order terms yields some minor improvements in models with exogenous regressors.
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