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Abstract

In this paper, we provide an overview of an emerging class of “monotone map
methods” in analyzing distorted equilibrium in dynamic economies. In par-
ticular, we focus on proving the existence and characterization of competitive
equilibrium in nonoptimal versions of the optimal growth models. We suggest
two alternative methods: an Euler equation method for a smooth, strongly
concave environment, and a value function method for a non-smooth super-
modular environment. We are able to extend this analysis to study models
that allow for unbounded growth or a labor-leisure choice.



1 Introduction

The basic tool for studying macroeconomic dynamics is the stochastic opti-
mal growth model, a model that has been used in almost all macroeconomic
modeling in the last two decades. Initiated with the work of Brock and Mir-
man [11], the study of this model and its many variants has mostlty relied on
the assumptions of continuity, concavity and regularity of the representation
of the underlying primitive data of the model to jointly imply differential
characterization of equilibrium. Hence, it has been natural to apply topo-
logical methods to derive all of the fundamental properties of these models.
In particular, one can appeal to topological methods to show the existence
of a unique Markovian equilibrium and to develop a class of Euler equation
methods to characterize this equilibrium.

However, the use of these models to analyze even deeper questions of
macroeconomics have resulted in classes of growth models that do not pos-
sess the properties required for applying these topological tools. This is
the case, for instance, when the convexity assumptions typically assumed for
production technologies are relaxed. For example, in the endogenous growth
literature, the role of human capital, central to explaining the differences in
long-term growth rates among developed countries, constitute a form of mar-
ket failure since private decisions of agents fail to incorporate the external
effects of human capital. This, in turn, implies that the second welfare theo-
rem is not applicable. There are many other examples also worth noting. In
public finance and monetary models, when fiscal and monetary agents play
a role in determining the equilibrium dynamics governing capital accumula-
tion, investment, consumption and output, the second welfare theorem is no
longer applicable. As a consequence, existing topological methods are of lim-
ited applicability; questions concerning the existence and characterization of
equilibrium become complicated to study and may require a non-topological
method of analysis.

In this survey, we discuss an emerging class of methods, which we identify
as the “monotone map methods” pioneered by Coleman [12][14][13] and ex-
tended by Greenwood and Huffman [20] and Datta, Mirman and Reffett [15].
In a related but parallel field of macroeconomics, lattice theory techniques
were introduced by Amir, Mirman and Perkins[6] and extended by Hopen-
hayn and Prescott[21]. These two strands of the literature has recently been
amalgamated by Datta, Mirman, Morand and Reffett[16], Mirman, Morand,
and Reffett [33] and Morand and Reffett [35]. These new methods are
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powerful, and are based on results developed in the mathematics literature
studying fixed-point operators on partially ordered spaces. We are particu-
larly interested in studying the optimal policies of the agents in these models
and showing the existence of equilibrium using these properties, as well as
characterizing the comparative statics of equilibrium solutions.1 Such meth-
ods are powerful, and are based upon some important results developed in
the literature in mathematics studying fixed points of operators on partially
ordered spaces. Results in this literature vary from primarily topological,
as in the work of Krasnoselskii [24] [25], and Amann [5], to lattice based, as
in the work of Tarski [47], Topkis [51] [52], Vives [55] and Zhou [56]. Some
of the methods are topological and often require the underlying domain of
the continuous compact operators to be subsets of partially ordered Banach
spaces with particularly desirable properties; other methods are primarily
lattice based and require very little, if any, concerning the continuity of op-
erators. However, in that case, very strong completeness properties of the
domains of the operators are required. These monotone methods (whether
topological or lattice based), unlike methods based upon fixed-point the-
orems by Brouwer, Schauder, or Fan-Glicksberg, are constructive and can
therefore be used as the basis for a systematic study of the theoretical prop-
erties of numerical methods that are generally used in the applied literature
to compute numerical solutions to such models. As the quality of numerical
approximations of Markov equilibrium is becoming an emerging concern in
much of the applied macroeconomics and public finance literature, monotone
methods are particularly appealling as they provide a globally stable class
of iterative methods for which practioners can implement in their numerical
work. 2

1In a recent paper by Santos [42], an example of non-existence of continuous Markov
equilibrium is presented for an econony with a decreasing tax rate. What happens in that
example is that the tax is sufficiently decreasing to destroy the complementarity between
the households asset choice decision and the aggregate capital stock. This means that,
in equilibrium, generally the Markov equilibrium (if it existed) would not be monotone
in the endogenous state variables. This is the basis of the counterexample. It should be
noted that using the methods of section 3 in this paper, some economies with decreasing
taxes can have monotone Markovian equilibrium. The key is that the tax cannot decrease
“too much” where “too much” refers to the tax being such that u(f(k,K, z; t) − y) is no
longer has a single crossing property in (y; k,K) for each z for the t under consideration.

2It is true that for Brouwer’s fixed point theorem, one can use Scarf’s algorithm to
compute the fixed point, and therefore in some sense this fixed point theorem is construc-
tive. But a couple of remarks are in order. First, for the class of problems we study, in
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We begin by considering a class of environments that are basically nonop-
timal versions of the model studied in Brock and Mirman [11] (e.g., single
sector production, identical agents, uncertainty, rational expectations, inelas-
tic labor supply). That is, we deal with growth models in this survey that
are amended to allow for possible violations of the second welfare theorem
(e.g., situations where there are taxes, distortionary monetary policy or pro-
duction externalities associated with capital accumulation). These are the
prototype of models considered in Coleman [12] and Greenwood and Huffma
[20]. We first present the monotone map methods that are typically used in
the existing literature and that are built around equilibrium versions of the
household’s Euler equations (as in Coleman [12]). We then discuss a new
monotone map approach, which is not based on equilibrium Euler equations,
but is based on the operator is defined from the Bellman’s equation. Thus,
the value function approach generates a sequence that has fixed points on
a complete lattice of functions. This operator also uses information about
the value function to obtain additional characterizations of the equilibrium
that are not available using a pure Euler equation approach. We then dis-
cuss how to develop an alternative version of the monotone map procedure
that does not involve any smoothness considerations (e.g., that does not use
Euler equations). This new method is developed in a recent paper of Mir-
man, Morand, and Reffett [33]. We conclude by showing how the methods
discussed in the paper can be extended to more general specifications of the
primitive economic data. In particular, we consider models with endoge-
nous labor supply, models that allow for unbounded equilibrium growth, and
models with some limited form of altruism.3

general Markov equilibria are elements of function lattices that are not finite dimensional
(i.e., not compact), and therefore Scarf’s procedure will not apply. As there are not ver-
sions of Scarf’s procedure for infinite dimensional operators, the class of theorems in the
Brouwer-Schauder-Fan/Glicksberg class are in not constructive. Second, Scarf’s algorithm
is silent on which fixed point is actually computed. Therefore stability is a question, as
is also sensitivity of any numerical procedure based upon it. For example, changes in
initial conditions for any computational procedure is a concern, as would be studying the
comparative statics of any such fixed point algorithm in a parameter. Finally, even in the
rare case the equilibrium are in a finite dimensional space (e.g., an equicontinuous closed
subset of continuous function), it is not clear how one can enumerate the dimension of
the space, and therefore its basis. Therefore its not clear how one would even implement
Scarf’s method even for cases where Markov equilibrium set in compact subsets of bounded
continuous function on a compactum.

3One should note that another approach to Markov equilibrium is a topological ap-
proach based upon the Negishi problem proposed in the work of Kehoe, Levine, and
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The paper is organized as follows. In Second 2 we discuss the meth-
ods of Coleman [12], Greenwood and Huffman [20] and Datta, Mirman and
Reffett[15]. We call this a monotone map method that utilizes the Euler
equation, and, therefore, applies to smooth and strongly concave environ-
ments. In Section 3 we present an alternative monotone map method based
upon the properties of the best response map of each agent, and construct
an operator directly from Bellman’s equation involving a value function it-
eration that exploits the supermodularity of the environment. We then
compare the two methods. Specifically, we show that as opposed to the
topological constructions that underlie the approaches in Coleman [12][14],
the analysis of operators constructed from the best response mapping relies
only on the order structure and properties of a set of functions, and that we
can directly apply Tarski’s fixed-point theorem to a complete lattice of func-
tions. As a result, our work generalizes some of the results in Hopenhayn
and Prescott [21]. Section 4 shows how the methods of Coleman [12] can be
extended to models with unbounded growth, endogenous labor supply, and
nonpaternalistic altruism. Section 5 concludes.

2 The Euler Equation Method for Strongly

Concave Environments

2.1 The Primitive Data

Time is discrete and indexed by t ∈ T = {0, 1, 2, ...}, and there is a contin-
uum of infinitely-lived and identical household/firm agents. In each period,
households are endowed with a unit of time, which they supply inelastically to
competitive firms. Uncertainty comes in the form of a finite state, first-order
Markov process denoted by zt ∈ Z, with stationary transition probabilities

Romer [22][23]. This method is a very interesting alternative to monotone methods. Un-
fortunately, to date, it has not been applied to a very broad class of nonoptimal economies.
One problem with this approach is that it would appear the tools of differential topology
and degree theory are critical for its application. In much of this work, the equilibrium
manifold must be the graph of a appropriately smooth function, and this requirement
seems problematic (as many economies do not possess smooth Markov equilibrium). It is
important to remember that these tools are complementary to monotone methods, espe-
cially when studying strongly concave models.
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χ(z, z′).4 Let the set K ⊂ R+ contain all the feasible values for the aggre-
gate endogenous state variable K, i.e., the per capita capital to labor ratio,
and define the product space S : K× Z. Since the household also enters
each period with an individual level of the endogenous state variable k, the
individual capital to labor ratio, we denote the state of a household by the
vector s = (k, S) ∈ K× S.

For each period and state, the preferences are represented by a period
utility index u(ci), where ci ∈ K ⊂ R+ is period i consumption. Letting
zi = (z1, ..., zi) denote the history of the shocks until period i, a household’s
lifetime preferences are defined over infinite sequences indexed by date and
history c = (czi) and are given by:

U(c) = Eo

{
∞∑
i=0

βiu(ci)

}
,

where the summation is with respect to the probability structure of the
shocks. We make the following assumption:

Assumption 1. The utility function u : K 7→ R is bounded, twice
continuously differentiable, strictly increasing, strictly concave. In addition,
u′(c) satisfies the standard Inada conditions:

lim
c→o

u′(c) = ∞ and lim
c→∞

u′(c) = 0.

We assume that output available to the household in the current period
is represented by the function f(k,K, z; t), where t is a continuous mapping
that represents distortions and thus influences technology. The underlying
technology exhibits constant returns to scale in private inputs, and satisfies
the following assumption.

Assumption 2
(i). f(0, K, z; t) = 0 for all K ∈ K, z ∈ Z and t ∈ T.
(ii). f is uniformly continuous, twice continuously differentiable, strictly

increasing in (k, K) and strictly concave in its first argument.

4To simplify the exposition, we use a finite state-space for the exogenous shocks. See
Hopenhayn and Prescott [21] for a discussion on handling of shock processes with more
general state-spaces, and the additional restrictions that are placed on transition processes
for the shocks.
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(iii). f1(K, K, z; t) is weakly decreasing (i.e., non-increasing) in K.

Assumption 3. There exist k̂(z) > 0 such that f(k̂(z), K, z; t) + (1 −
δ)k̂(z) = k̂(z) and f(k, K, z; t) < k for all k > k̂(z) and for all z ∈ Z.

The restrictions on the primitives in Assumptions 1 and 2 are made to
apply the Euler equation approach developed in the next section. They are
also consistent with the standard assumptions made in the stochastic growth
literature (e.g., Brock and Mirman [11]). Assumptions 1 and 2 jointly imply
that the utility function Υ(k, K, k′, z; t) = u[f(k,K, z; t) − k′] is strongly
concave in (k, k′) for each (K, z, t). Assumption 3 is a standard feature in
stochastic growth literature (See Brock and Mirman [11]), and implies that
supzk̂(z, t) exists. As a consequence, the state-space for the endogenous
variable k (and for output) can be taken to be the compact interval K = [0, k̄],
where k̄ is the larger of the two quantities, the initial stock k0 and supzk̂(z, t).
This implies that the boundedness assumption on utility can be relaxed, since
a continuous utility defined on a compact space is necessarily bounded.

The parameter vector t may represent the actions of a government and
can be interpreted in many ways. For instance, in an economy with a state
contingent capital income tax (as in Coleman [12]) the modified technology
can be written as follows:

f(k,K, z; t) = (1− t1(K, z))g(k,K, z) + t2(K, z),

where g is the undistorted production function, t1(K, z) : S → [0, 1], and
t2(K, z) is interpreted as a lump sum transfer. If we define the standard
lexicographic partial order on the set of parameter vectors t ∈ T as t′(K, z) �
t(K, z) if either t

′
1(K, z) < t1(K, z) for all S ∈ (K, z) ∈ K× Z, or t

′
1(K, z) =

t1(K, z) and t
′
2(K, z) ≥ t2(K, z), then f(k,K, z; t) is increasing in t. Many

other cases of distorted economies can also be handled in this framework.
In each period, we impose the condition that the government budget is in
equilibrium and the revenues exactly match the expenditures, i.e., t2(K, z) =
g1(K, K, z)t2(K, z).

The dynamic decision problem for the household is simple. For a given
t ∈ T, we define the household’s feasible correspondence Γ(k, K, z; t) for
the distorted economy as the set of actions (c, k′) satisfying the following
constraints:

c + k′ = f(k,K, z; t); and c, k′ ≥ 0

6



Under Assumption 1, Γ(k, K, z; t) is a well-behaved correspondence for each
s = (k, K, z) ∈ K× S for fixed t ∈ T. In particular, since f and t are
assumed to be continuous, Γ is a non-empty, compact and convex-valued,
continuous correspondence for each state s. Also, since t is increasing in K,
for each z, the correspondence Γ is expanding in (k,K). Also note that the
household’s feasible correspondence is expanding in t ∈ T; that is, if t′ ≥ t
in the partial order structure on T, then Γ(k,K, z; t) ⊆ Γ(k, K, z; t′) for all
(k, K, z).

To construct the household’s decision problem, consider that households
assume that the per capita capital stock evolves according to:

K ′ = κ(K, z; t),

where for any given t, κ(., .; t) : S → K is continuous in both its arguments
and is increasing in K for each (z, t). Then the household solves the dynamic
decision problem summarized in the following Bellman equation:

J(s) = sup
(c,k′)∈Γ(s;t)

{u(c) + β

∫
Z
J(s′)χ(z, dz′)}. (1)

Standard arguments show the existence of a J ∈ V that satisfies this func-
tional equation, where V is the Banach space of bounded, continuous, real
valued functions with the sup norm (see, for instance, Stokey, Lucas and
Prescott [45]). In addition, standard arguments also establish that J is
strictly concave in k, and following Mirman and Zilcha [34], the concavity of
J also implies that J is once differentiable in k.

We define an equilibrium for the state contingent income tax economy as
follows:

Definition: A (recursive) competitive equilibrium for this economy con-
sists of a parameter vector (t1, t2), a value function for the household J(s),
and the associated individual decisions c and k′ such that: (i) J(s) sat-
isfies the household’s Bellman equation (1), and c, k′ solve the optimiza-
tion problem in the Bellman’s equation given t; (ii) all markets clear: i.e.,
k′ = κ(S) = K ′and (iii) the government budget balances.

2.2 Existence of Equilibrium

Since the parameter vector t generally induces distortions, we cannot con-
struct an equilibrium solution based upon the second welfare theorem. We
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adopt an alternative strategy, the “Euler equation approach”5 and construct
an equilibrium by iterating an operator constructed from the household’s
decision problem. Specifically, we look for a fixed point of a monotone op-
erator defined implicitly by the Euler equation on the space of policy func-
tions. An operator A on a partially ordered set (X,≥) is monotone (or
order-preserving) if h′ ≥ h implies Ah′ ≥ Ah, for all (h, h′) ∈ X. With this
in mind, we can now state and prove a version of a topological fixed point
theorem, due to Amann [5], for increasing maps that directly applies to our
problem.

Theorem 1 Let E be an equicontinuous set of functions defined on a com-
pact set X and equipped with the sup norm and the pointwise partial order,
and [y, ŷ] be a closed order interval in E. Suppose that A : [y, ŷ] → [y, ŷ],
is an increasing, continuous map. Then A has a maximal fixed point x̂ and
x̂ = limn→∞ Anŷ, and the sequence {Anŷ}∞n=0 is decreasing.

Proof: Necessarily Aŷ ≤ ŷ and, recursively, the sequence {Anŷ}∞n=0 is a
decreasing sequence of equicontinuous functions. By the Arzela-Ascoli the-
orem, there exists a convergent subsequence in E. First, since the sequence
is decreasing, the converging subsequence is the sequence itself.

Second, for any k ∈ X, the sequence {Anŷ(x)}∞n=0 is a monotone sequence,
bounded below by y(k), and therefore converges to its inf. Thus, the limit
of the sequence {Anŷ}∞n=0 is infn∈N{Anŷ} which we denote x̂, and x̂ ∈ E.
Further, since y ≤ Anŷ ≤ ŷ, then y ≤ x̂ = infn∈N{Anŷ} ≤ ŷ, and x̂ ∈ [y, ŷ].

Third, by continuity of A, Ax̂ = x̂ which implies that x̂ is a fixed point.
If x is an arbitrary fixed point in [y, ŷ] such that y ≥ x ≥ x̂, then for all n,
Any ≥ x ≥ x̂, and therefore x̂ = inf{Any} ≥ x ≥ x̂ so that x = x̂, which
implies that x̂ is the maximal fixed point.

Finally, since the sequence {Anŷ}∞n=0 converges pointwise to a continuous
function, the convergence is uniform by Dini’s theorem (Note that if we relax
the assumption of compactness of X, then the convergence is uniform on any
compact subset of X).�

5This is in contrast to the “value function” or the “Bellman equation” approach, in
which one looks for a fixed point of the Bellman’s operator in the space of value functions.
In a non-smooth environment, the Bellman equation approach is useful while the Euler
equation approach need not be.
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We apply this theorem to an operator defined in Coleman [12] to prove
existence of a Markovian equilibrium.6 As for establishing uniqueness of
Markovian equilibrium, unfortunately as shown in Coleman [12], our operator
has desirable concave properties only for specific environments (i.e., CES
utility) and, thus, cannot be used to establish uniqueness in the most general
setup. However, in section 2.3, we discuss a second operator, similar to
the operator studied in Coleman [14], whose fixed points coincide with the
fixed points of the first operator. We then show that this second operator
has at most one strictly positive fixed point. This same line of argument is
developed for a model with labor-leisure choice in Datta, Mirman and Reffett
[15].

To apply the above theorem, we need to define a candidate operator
A whose fixed points coincide with the Markovian equilibrium. The Euler
equation associated with the optimal policy function from the right side of
the Bellman equation in (1) (after appealing to the envelope condition) is:

u′(c(K, z)) = β

∫
Z
u′[c(F (K, z)− c(K, z), z′)]r(F (K, z)− c(K, z), z′)χ(z, dz′).

(2)
Here, F (K, z) = f(K, K, z; t) and r(K, z) = f1(K, K, z; t) for notational
simplicity, that is, the equilibrium condition K = k has been imposed.

Definition: Consider the space, denoted H0, of consumption functions
h such that:

(i). h : S → K;
(ii). 0 ≤ h(K, z) ≤ F (K, z) for all (K, z) ∈ S
(iii). 0 ≤ h(K ′, z) − h(K, z) ≤ F (K ′, z) − F (K, z) for all K ′ ≥ K and

all z.

We equip H0 with the standard sup norm and the partial order ≥ defined
as h′ ≥ h if and only if h′(K, z) ≥ h(K, z) for all (K, z) ∈ S. Notice that
condition (ii) imposes that both h and f − h are increasing. Also, since f is
assumed to be continuous, implies that the functions in H0 are continuous.
The following Lemma summarizes some important properties of H0.

6Coleman considers an application of a theorem in Dugundji and Granas [19] for or-
der continuous operators. When considering Coleman’s application of this theorem, it
is important to recall that a topologically continuous operator is not necessarily order
continuous.
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Lemma 2 Under Assumptions 1 and 2, the set H0 is a closed order interval
of an equicontinuous set of functions.

Proof: Condition (ii) implies that h is chosen in the closed-order interval
[0, F ]. Equicontinuity is induced by the required double monotonicity in
condition (iii) of the elements of H0, in conjunction with the uniform con-
tinuity of F (K, z) (recall from Assumption 2 that F (K, z) = f(K, K, z; t)
is continuous in k and therefore uniformly continuous since K is compact).
The assumption of uniform continuity of F on its domain implies that:

∀ε > 0,∃δ > 0 |K ′ −K| < δ =⇒ |F (K ′, z)− F (K, z)| < ε.

For all h in H0, property (ii) implies: for all k′ ≥ k,

0 ≤ h(K ′, z)− h(K, z) ≤ F (K ′, z)− F (K, z).

Combining this last inequality with the uniform continuity of F leads to:

∀ε > 0,∃δ > 0 |K ′ −K| < δ =⇒ ∀c in H0
+, |h(K ′, z)− h(K, z)| < ε,

which demonstrates equicontinuity of the set of functions.�

Notice that this result does not require compactness of the state-space
S. This will be useful when studying the case of unbounded growth in the
last section of the paper that discusses extensions. To construct Marko-
vian equilibrium now, we simply define a nonlinear operator based upon
an equilibrium version of the household Euler equation. Therefore, for any
h ∈ H0, h > 0, and any (K, z), define Ah(K, z) as the solution, for y of the
following equation:

u′(y) = β

∫
Z

u′(h(F − y, z′), z′)r(F − y, z′)χ(z, dz′).

For h = 0, we set Ah(K, z) = 0. The following lemma lists key properties
of the operator A:

Lemma 3 Under Assumptions 1 and 2:
1. For any h ∈ H0, and for any (k, z), there exists a unique Ah(k, z);
2. A maps H0 into itself;
3. A is a monotone operator on H0.
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In addition, if Assumption 3 holds:
4. A is a continuous operator on H0;
5. There exists a maximal fixed point h∗ ∈ H0 and the sequence {AnF}

converges uniformly to h∗.
6. The maximal fixed point is strictly positive.

Proof: The proofs of (1), (2), (3) and (4) are in Coleman [12]. It is
important to note that neither (1), (2), nor (3), rely on compactness of the
state-space, and are therefore valid under Assumptions 1 and 2 only. Part
(5) follows directly from the topological fixed point theorem stated above,
and provides an important algorithm for computational procedures. Notice
that this theorem does not rule out the possibility for the zero consumption
to be the only fixed point of A. However, it is easy to show that the zero
consumption plan is not optimal, a feature of the model that crucially relies
on the assumption of unbounded marginal utility at zero.�

We can now state our existence result.

Proposition 4 Under Assumptions 1, 2 and 3, there exists an equilibrium.

Proof. That the set of fixed points of the operator A for any t is nonempty
follows from Lemma 3. Further, any strictly positive fixed point is decentral-
izable as a competitive equilibrium, and Lemma 3 (6) guarantees that the
maximal fixed point is strictly positive. �

2.3 Uniqueness of Equilibrium

Coleman [12] establishes the uniqueness of the fixed point of the mapping A
by restricting the utility function (see assumption 7 in Coleman [12]). We
build on the work of Coleman [13] to demonstrate uniqueness for the gen-
eral class of utility functions satisfying Assumption 1 by introducing another
operator, denoted Â, which we show is pseudo concave and K0-monotone.
Note that, as stated in the next theorem, pseudo concave and K0 mono-
tone operators have at most one strictly positive fixed point. Recalling that
(X,≥) is a arbitrary partially ordered set, we define the following:

Definition. An operator Â on X is pseudo concave if for any strictly
positive function c in X any 0 < λ < 1, and for all (K, z) ∈ S, (Âλc)(K, z) >

λ(Âc)(K, z).
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Definition. An operator Â on X is K0-monotone if it is monotone
and if for any strictly fixed point c1 of Â there exists some K0 > 0For any
0 ≤ K1 ≤ K0 and any c2 ∈ X such that c1(K, z) ≥ c2(K, z), c1(K, z) ≥
(Âc2)(K, z) for all K ≥ K1 and all z.

Theorem 5 An operator Â:X→ X that is pseudo concave and K0-monotone
has at most one strictly positive fixed point.

Proof: See Coleman [12]. �

We construct the operator Â as follows. First define the set of functions,
denoted by, M , endowed with the standard partial pointwise order.

M is the collection of m : R+ × Z → R such that:
(i). m is continuous,
(ii). For all (K, z) ∈ R+ × Z, 0 ≤ m(K, z) ≤ F (K, z)
(iii). For any K = 0, m(K, z) = 0.
Notice that the set of consumptions functions H0 consistent with some

m ∈ M forms a strict subset of M. Indeed the set of consumption functions
consistent with M is much larger than H0. For any m ∈ M , consider the
function Ψ(m(K, z)) implicitly defined by:

u′[Ψ(m(K, z))] =
1

m(K, z)
, for m > 0, 0 elsewhere.

Clearly, Ψ is continuous, increasing, limm→0 Ψ(m) = 0, and limm→F (K,z) Ψ(m) =

F (K, z). Using the function Ψ, for any m > 0 we denote by Âm(K, z) the
solution for y to the equation:

Ẑ(m, y, K, z) =
1

y
− βEz[

H(F (K, z)−Ψ(y), z′)

m(F (K, z)−Ψ(y), z′)
] = 0,

and set Âm = 0 when m = 0.
Since Ẑ(m, y, K, z) is strictly decreasing and continuous in y and limy→0 Ẑ(m, y, K, z) =

∞ and limy→F (K,z) Ẑ(m, y, K, z) = −∞, for each m(K, z) > 0,with K > 0,

and z ∈ Z, there exists a unique Âm(K, z).
It is easy to show that to each fixed point of the operator A corresponds

a fixed point of the operator Â. Indeed, consider x such that Ax = x and
define y = 1

u′(x)
(or, equivalently Ψ(y) = x). It is also easy to verify that

Am ⊂ M and is monotone on M. By definition, x satisfies:
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u′(x(K, z)) = βEz{H(F (K, z)− x(K, z), z′)× u′(x(F (K, z)− x(K, z), z′))}

for all (K, z). Substituting the definition of y into this expression yields:

1

y
= βEz{

H(F (K, z)−Ψ(y(K, z)), z′)

y(F (K, z)−Ψ(y(K, z), z′))
},

which shows that y is a fixed point of Â.

Lemma 6 The operator Â is pseudo concave and K0-monotone, and there-
fore has at most one strictly positive fixed point.

Proof: Recall that Â is pseudo concave if, for any strictly positive m and
any 0 < t < 1, Âtm(K, z) > tÂm(K, z) for all K > 0 and for all z ∈ Z.

Since Ẑ is strictly decreasing in its second argument, a sufficient condition
for pseudo-concavity is that:

Ẑ(tm, tÂm,K, z) > Ẑ(tm, Âtm, K, z) = 0. (3)

By definition:

Ẑ(tm, tÂm,K, z) =
1

tÂm
− βEz{

H(F (K, z)−Ψ(tÂm(K, z)), z′)

tm(F (K, z)−Ψ(tÂm(K, z)), z′)
},

so that:

tẐ(tm, tÂm, K, z) =
1

Âm
− βEz{

H(F (K, z)−Ψ(tÂm(K, z)), z′)

m(F (K, z)−Ψ(tÂm(K, z)), z′)
}.

Since Ψ is increasing and H(K ′, z′)/m(K ′, z′) is decreasing in K ′:

1

Âm
− βEz{

H(F (K, z)−Ψ(tÂm(K, z)), z′)

m(F (K, z)−Ψ(tÂm(K, z)), z′)
}

>
1

Âm
− βEz{

H(F (K, z)−Ψ(Âm(K, z)), z′)

m(F (K, z)−Ψ(Âm(K, z)), z′)
} = 0,

and Ẑ(tm, tÂm, K, z) > 0 so that condition (3) is obtained.
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The condition that limk→0 f1(k,K, z) = ∞ for all K > 0, all z in Assump-

tion 1 (ii) implies that H(0, z′) = ∞ for all z′. Given that Â is monotone, this

latter condition is sufficient for the operator Â to be K0-monotone (Lemma
9 and 10 in Coleman [12]). �

All fixed points of A, and at least one of them is strictly positive, are also
fixed points of Â, which has at most one fixed point. Thus, necessarily, the
strictly positive fixed point of A is unique, and we can state our existence
result.

Proposition 7 Under Assumptions 1, 2 and 3, there exists a unique strictly
positive equilibrium H0.

Proof: The existence of a unique strictly positive fixed point for Â follows
from the previous lemma, along with the theorem of Coleman [12] for pseudo-
concave, Ko− monotone operators. As any trajectory of the operator A
is equivalent to a trajectory of the operator Â by a standard argument in
Coleman [14], the strictly positive fixed point of Â coincides with the unique
strictly positive Markovian equilibrium in H0.�

3 A Value Function Iteration Method for a

Class of Superextremal Economies

In this section, we relax the smoothness restrictions on the primitives as-
sumed in the previous section, and use lattice theoretic methods along with
supermodularity to study existence and characterization of equilibrium. The
new set of assumptions encompasses a different approach than the one con-
sidered before, although our method of analysis also applies to the setup of
the previous section. Abandoning the assumption of differentiability and
smoothness implies that we cannot work with the Euler equation, and there-
fore, we build a method based on the Bellman’s equation. The approach in
this section of the paper can therefore be viewed broadly as an extension of
the work of Hopenhayn and Prescott [21] for distorted economies. It builds
upon the pioneering work of Veinott [54], Topkis [50][52], LeCalzi and Veinott
[26], and Milgrom and Shannon [31], and develops a superextremal approach
to characterizing the fixed point operator. Then using order theoretic fixed
point arguments due to Tarski [47], we provide an alternative approach to the
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existence and characterization of Markovian equilibrium. It should be noted
that for the case of optimal growth with general Markov shocks, the more
general results have been obtained in Mirman, Morand, and Reffett [32]. In
this paper, the authors show how to use a theorem in Topkis (along with a
new collection of commodity lattices) to generalize the previous results for
Leontief production obtained in the Markov shock case in Hopenhayn and
Prescott [21].

Mirman, Morand and Reffett [33] extend the analysis further and show
that these value function methods can be generalized to distorted economies
in which the strict concavity assumptions on the primitives are relaxed. How-
ever, without strict concavity the analysis is complicated by the fact that the
optimal policy need no longer be a single-valued mapping, but may be a cor-
respondence. Mirman, Morand and Reffett [33] generate existence and char-
acterization results by constructing an argument based on a generalization
of Tarski’s fixed-point theorem to correspondences.

In this section, we make the following assumptions on the primitives
of taste and technology (contrast these assumptions with Assumptions 1
through 3 made in the previous section):

Assumption 4. The primitive economic data satisfy the following:
(i) period utility function u : K 7→ R is bounded, continuous, strictly

concave, and strictly increasing in c;
(ii) for any t ∈ T, the production function f(.; t) : K×K×Z is continuous

and non-decreasing in all of its arguments, and satisfies f(0, K, z; t) = 0 for
all (K, z, t) ∈ K× Z× T;

(iii) there exist k̂(z, t) > 0 such that f(k̂(z, t), k̂(z, t), z, t)+(1−δ)k̂(z, t) =
k̂(z, t) and f(k, k, z, t) < k, for all k > k̂(z, t) and for all z ∈ Z and t ∈ T;

(iv) the period utility function u, the production function f, and the pa-
rameter t ∈ T are such that Υ(y, k,K, z, t(K, z)) = u(f(k,K, z; t) − y) is
supermodular in (x, y) where x = (k,K) for each (z, t).

(v) f(k,K, z; t) is increasing in t in the sense that if t′ ≥T t, then for all
(k,K, z) ∈ K × Z × T , f(k,K, z; t′) ≥ f(k, K, z, t).

Finally, we restrict the shock process as in Hopenhayn and Prescott [21]
(so that the supermodularity is preserved under the operation of integration):

Assumption 5: The transition function χ(., .) is increasing in its first
argument in the stochastic order sense.

Assumption 5 assumes that the transition function is totally positive of
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order 2 (or equivalently log supermodular), and guarantees that the opera-
tion of integration preserves supermodularity on a Euclidean lattice for the
parameter set.

3.1 The Household Decision Problem

For a given t ∈ T the household’s feasible correspondence Γ(k,K, z, t) is the
set of actions (c, k′) satisfying:

c + k′ = f(k, K, z; t) and c, k′ ≥ 0,

and is a well-behaved correspondence for each (k,K, z), t ∈ T under As-
sumption 4. In particular, Υ is again under Assumption 4, a non-empty,
compact-valued, continuous correspondence for each state s = (k, S). Since
t is increasing in K, the correspondence is expanding in (k,K), while also
expanding in t ∈ T.

To complete the description of the aggregate economy, we assume that
households take as given the following recursion on the per-capita aggregate
capital stock K:

K ′ = h(K, z)

where h ∈ H ⊂ C and C is the set of bounded functions defined on a
compact S, and H is a subset of C for which we also require h to be socially
feasible, i.e., for each t ∈ T, 0 ≤ h(K, z) ≤ f(K, K, z; t) for all (K, z), upper
semicontinuous and non-decreasing in its first argument for each z, i.e. for
the latter condition, h(K ′, z) − h(K, z) ≥ 0 when K ′ ≥ K. Equipped with
the Sup norm and the standard pointwise order structure, H is a subset of
the Banach lattice C of bounded functions defined on S. Notice that we
do not require h to be continuous. Indeed, we place no restrictions on f ,
other than continuity and monotonicity. Therefore, we cannot expect the
policy function to be continuous. The following proposition establishes that
sufficient structure for applying Tarski-related fixed-point theorems exists.

Proposition 8 H is a complete sublattice of the Banach lattice of bounded
functions C.

Proof: Consider the standard pointwise order on H, and any family
of functions of H. First, the sup and inf of such a family are both non-
decreasing functions that belong to [0, f ]. Second, the lower pointwise en-
velope of this family (ie, the inf) is usc. Since H has a top element (f), by
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Davey and Priestley [17] (Theorem 2.16 p. 34), H is a complete lattice, and
therefore a sublattice of the Banach lattice of bounded functions C.�

We are now ready to represent the typical household’s decision problem
for a decentralized competitive equilibrium. Consider a household entering
the period in state (k,K, z) for a given h and t. For any given h ∈ H and
t ∈ T, the value function v(k,K, z; t, h) necessarily satisfies:

v(k, K, z; t, h) = sup
c,k′∈Γ(k,K,z;t)

{u(c) + β

∫
Z
v(k′, h(K, z), z′; t, h)χ(z, dz′)}. (4)

Defining the operator TC as:

TCv(k, K, z; t, h) = sup
0≤y≤f(k,K,z,t)

{u(f(k, K, z, t)−y)+β

∫
Z
v(y, h(K, z), z′; t, h)χ(z, dz′)},

and applying the standard version of the theorem of the maximum (see Berge
[10]) and the contraction mapping theorem (e.g., Stokey, Lucas and Prescott
[45]) applied to the space V of functions v(k, K, z; t, h) that are bounded,
continuous in k, increasing in all arguments equipped with the pointwise
partial order and the uniform metric, it is easy to show that TC delivers
a unique value function v∗(k, K, z; t, h) for each pair (t, h), as stated in the
following lemma:

Lemma 9 For h ∈ H and t ∈ T, under Assumptions 4 and 5, there exists
a unique function v∗ bounded, weakly increasing, concave and continuous in
its first argument satisfying Bellman’s functional equation (4).

To further characterize v∗ ∈ V , let

γ(k, K, z; t, h) = {y | y = arg max
0≤y≤f(k,K,z,t)

{u(f(k,K, z, t)− y)

+β

∫
Z

v∗(y, h(K, z), z′; t, h)χ(z, dz′)},

the optimal policy associated with the value function v∗(k,K, z; t, h). Since
the right hand side in the definition of γ is strictly concave in y, the optimal
policy exists for each (k,K, h, t). We next show that the Bellman’s operator
TC maps a closed subspace V′ of V into itself.
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Definition. Denote V′ as the set of functions v ∈ V such that v(k,K, z; t, h)
is:

(i) supermodular in (k, K) for each (z, t);
(ii) supermodular in (y, h) each (k,K, z, t);
(iii) supermodular in (y, t) for each (k,K, z, h).

By a supermodular function, we mean the following. Say X is a lattice,
and define the function f : X → R. Let x, y ∈ X. Then we say that f
is a super∗ function from a lattice to a chain where ”*” is a binary opera-
tion on the chain R if we f satisfies the following inequality: f(x) ∗ f(y) ≤
f(x∨y)∗f(x∧y). If ∗ is ”+”, we say the function is supermodular (or equiv-
alently superadditive). If ∗ is either ”∧” or ”∨” we say f is superextremal. If
∗ is ”·”, we say f is log-supermodular (or equivalently log-superadditive). Li
Calzi and Veinott [26] discuss the class of super* functions, and also use this
notion to construct the class of superextremal functions. Additionally, they
provide a complete characterization of the superextremal class. The mono-
tonicity results within the superextremal class can be shown to be closed
under increasing transformation, and in this sense are ordinal. Of course, su-
permodularity is a cardinal property of a function. A supermodular function
is superextremal. In this section, we will deal with supermodular functions,
although Mirman, Morand, and Reffett [33] discuss possible extensions of
these results to the ordinal case of superextremal functions.

Notice that as a space of supermodular functions (and actually superex-
tremal functions) is closed under pointwise limits. Therefore V′ is closed in
V. It can then be shown that the Bellman operator is actually a self map
and a contraction on V′, and that then provides the needed monotonicity
results to generalize the Euler methods of Coleman [12]. By Assumption 4,
and given that h is increasing in K for each z, then the right handside of
the Bellman’s equation is (i) supermodular in (y, k,K) for each (z, t), (ii) su-
permodular in (y, h) for each (k,K, z, t), and (iii) supermodular in (y, t) for
each (k, K, z, h). As a consequence, the set of optimal solutions associated
with some v ∈ V′ has γ increasing in the strong set order in (i) (k,K) for
each (z, t), (ii) increasing in h for each (k, K, z, t), and (iii) increasing in t for
each (k,K, z, h) by a result in Topkis [52] (Theorem 2.8.1). Therefore by
the monotonicity theorem in Milgrom and Shannon [31], Tv is quasisuper-
modular in its appropriate arguments. To show that TCv ∈ V′, simply use
the generalized envelope result for non-concave value functions in k (when
the policies are monotone) due to Amir[7] to obtain ∂TCv = u′ ◦ f1. Then

18



following an argument in Mirman, Morand, and Reffett [33], can be show
that this envelope is (i) increasing in K each (k, z, t, h), (ii) increasing in
h for each (k,K, z, t), and (iii) increasing in t for each (k,K, z, h) for each
v ∈ V′. Therefore TCv ∈ V′. By a standard reapplication of the contraction
mapping theorem, TCv∗ ∈ V′.

We therefore have the following result:

Theorem 10 Given any t ∈ T and h ∈ H, under Assumptions 4 and 5, the
value function v(k, K, z) has an optimal investment policy γ(k,K, z) that is
increasing in (k,K) for each z ∈ Z.

3.2 Existence of Equilibrium

Some of the assumptions required in the proof of existence in Section 2 have
been relaxed in this section, so existence has to be established through a
different path. Our strategy is to construct a nonlinear correspondence A
which maps a complete lattice of functions H into itself, and to show that this
correspondence is monotone increasing on H in the pointwise partial order.
Since H is a complete lattice, it follows from Tarski’s theorem that the set of
fixed points of A is not empty.7 We rely on the following version of Tarski’s
theorem8 [47]:

Theorem 11 Let (X,≥) be a complete lattice A : X → X an increasing
mapping. The set of fixed points of A is a non-empty complete lattice.9

Further, the sets of excessive and deficient points (resp. s ≥ A(s) and s ≤
A(s)) are non-empty complete lattices, and the greatest (resp. least) fixed
point is the greatest deficient point (resp. least excessive).

We construct the operator A as follows. For a given h, and a given t,
we define Ah as the optimal policy along a candidate equilibrium trajectory,

7Note that under a more general setup relaxing the assumption of strict concavity,
Zhou ([56]) develops a version of Tarski’s theorem for correspondence that can be applied
to demonstrate existence of equilibrium (See Mirman, Morand and Reffett [33]).

8For a proof, see Veinott [54] (Theorem 11).
9For the set of fixed points to be non-empty, monotonicity of the operator together

with chain completeness of the domain are sufficient conditions. If, in addition, there
exists a deficient point, then there exists a maximal fixed point (Knaster-Tarski theorem,
see Aliprantis and Border[3] p.14).
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that is, we impose the equilibrium condition k = K in the optimal policy so
that:

Ah(K, z) = γ(K, K, z; t, h)

This construction defines an operator A with the following properties:

Lemma 12 Given any t ∈ T, under Assumptions 4 and 5, for any h ∈ H,
Ah ∈ H and A is increasing in h in the partial pointwise order.

The following proposition is then a direct consequence of Tarski’s theo-
rem.

Theorem 13 Under Assumptions 4 and 5, the set of equilibrium is a non-
empty complete lattice.

Because a complete lattice is, a fortiori, chain complete, and the operator
A has an excessive point (the zero consumption, which satisfies A0 ≥ 0) and
a deficient point (the production function, which satisfies Af ≤ f), from
Tarski’s theorem the mapping A has a minimal and a maximal fixed point.
These order-based methods also suggest algorithms to compute the minimal
and maximal fixed points, as demonstrated in Mirman, Morand and Reffett
[33].

Theorem 14 For each t ∈ T, the maximal fixed point of the operator A can
be computed as hu(t) = limn→∞ An

uf(K, K, z; t).

3.3 Monotone Comparative Analysis

Comparative analysis for this economy describes how the set of fixed points
E(t) ∈ P (H) of the operator A changes with respect to changes in the pa-
rameter t ∈ T. Recall that T is endowed by pointwise partial order. When
comparing the elements of P (H), we will use the two order relationships that
are defined below (See Veinott [54] for a discussion of the ordinal structure
of the various partial orders on P (H)).

Let X be a partially ordered set and P (X) the power set of X:
(i) Weak induced set order (see Shannon [44] or Topkis [52]): The weak

induced set order on P (X)\∅, denoted by ≥w, is such that B ≥w B′ if for
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each x ∈ B, there exists x′ ∈ B′ such that x � x′, and for each x′ ∈ B′ there
exists x ∈ B such that x � x′.

(ii) Induced set ordering (discussed in Topkis [52] in section 2.4): The
induced set ordering on P (X)\∅, denoted by ≥s, is such that B ≥s B′ if for
each x ∈ X and each x′ ∈ X ′, x′ ∧ x ∈ B′ and x′ ∨ x ∈ B.

Clearly, when X is a lattice, the set order ≥s is a stronger ordering than
the weak order ≥w in the sense that B ≥s B′ implies that B ≥w B′. While
it is clear that ≥s implies ≥w, we were unable to obtain sufficient conditions
to generate comparative analysis results in ≥s .

Our strategy for comparative analysis is simple: We show that A is
increasing in the strong set order in the parameter t on T, where the order
we consider on T is simply the pointwise partial order. This, in effect, implies
that the return on capital for each state (k,K, z, h) is increasing in t in the
pointwise order. That is, we obtain a single crossing property (actually
increasing differences) in (y, t) for each (k,K, z, h). Therefore, we have the
following:

Theorem 15 Under Assumptions 4 and 5, for all t′ � t, the set of fixed
points E(t) of the nonlinear operator A satisfies: (i) E(t′) ≥w E(t), and (ii)
E(t′) ≥s E(t) on H.

One important implication of the above theorem is that for strongly con-
cave economies, the comparative analysis available for Markovian equilibrium
in a parameter are very strong. In particular, as equilibrium within a class
of equicontinuous functions are unique, the theorem implies that the equilib-
rium correspondence is a monotone function in t ∈ T.

4 Some Extensions of the Euler Equation Method

The Euler equation method described in Section 2 of this paper can be tai-
lored to various environments. First, we show how to establish existence and
uniqueness of equilibrium in models where the state-space is not compact
(i.e., Assumption 3 in Section 2 does not hold). Without the compactness
of the space of candidate equilibrium functions, which crucially depends on
the compactness of the state-space, we must abandon the topological fixed-
point theorem of Section 2 in favor of an order based fixed-point theorem (see
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Morand and Reffett [35] for complete details). Second, we apply the Euler
equation method to models in which labor is an input to the production of
the consumption good, as well as capital. There is the labor-leisure choice
and the distortions that take the form of taxes on labor and capital income.
This modification of the primitives increases the dimension of the choice set
of households and requires defining a more complicated set of functions as
the domain of our monotone increasing operator constructed from the Euler
equations (see Datta, Mirman and Reffett [15]). Finally, we note that the
Euler equation method provides a quick and elegant proof of existence and
uniqueness of equilibrium for a simple version of the altruistic model studied
in Ray [36].

4.1 Unbounded Growth

When the state-space is unbounded, and therefore not compact, the fixed-
point theorem used in Section 2 can not be directly applied. Thus, the
Euler equation method developed in Section 2 must be modified for models
in which Assumption 3 does not hold, which is the case, for instance, in en-
dogenous growth models with externalities for which there are no stationary
representation, as in Greenwood and Huffman [20]. The difficulty arises from
the fact that the set of functions on which A operates is much larger than
in the compact state-space case, since it includes some unbounded elements.
Fortunately, the space of candidate equilibrium functions H0 is a complete
lattice whether or not the state space is compact. We exploit this feature of
H0, together with the monotonicity of A, and follow the order based argu-
ment developed in Morand and Reffett [35] to prove existence of equilibrium.
Uniqueness rests on the same argument as in Section 2.

Recall that the space H0 defined in Section 2 is endowed with the point-
wise partial order. Consider the lattice operations ∨ and ∧

(h ∨ g)(K, z) = max{h(K, z), g(K, z)}

and
(h ∧ g)(K, z) = min{h(K, z), g(K, z)}

for each (K, z) ∈ S. Since the inf and sup of any family of increasing
functions are obviously increasing functions, we have the following result:

Lemma 16 H0 is a complete lattice.
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Proof: Recall that a lattice E is complete if any subset G of E is such
that G has a sup and an inf. Consider any family G of elements of E.
Clearly (i) 0 ≤ sup G ≤ F , (ii) sup G is weakly increasing in K, and (iii)
F − sup G = inf{F − g}g∈G is also weakly increasing in K. A similar
argument applies for inf G. Thus E is a complete lattice.

Recalling from Section 2 that the operator A is monotone (whether or
not the space is compact), Tarski’s theorem cited above applies.

Proposition 17 Under Assumptions 1 and 2, the set of fixed points is nonempty,
and there exist greatest and least fixed points.

Proof: Standard application of Tarski’s fixed-point theorem (stated in
the previous section) .

Additional characterization of the maximal fixed point rests on the prop-
erty that A is order continuous at the pointwise limit of the sequence {AnF}∞n=0.
We refer the reader to Morand and Reffett[35] for the complete analysis, and
simply state the following result.

Proposition 18 The sequence {AnF}∞n=0 converges to the maximal fixed
point, and the convergence is uniform on any compact subset of the state-
space.

Finally, it is important to note that relaxing the boundedness assumption
on utility is not a trivial matter, since there is no general theory that guar-
antees existence of a value function, let alone existence of an Euler equation,
when an unbounded return function is combined with a unbounded state
space.10

4.2 Models with Capital and Elastic Labor Supply

We alter the model presented in Section 2 to incorporate elastic labor supply,
allowing for state contingent wage and capital taxes and production exter-
nalities, as in Datta, Mirman and Reffett[15]. Production is characterized

10There are some results on existence of a value function for some primitives generating
unbounded return functions (see Alvarez and Stokey [4], Miao [29], and Morand and
Reffett [35])
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by perfectly competitive markets for both output and the factors of produc-
tion, as in the previous sections, but households have preferences defined
over both consumption and leisure, so their unit of time will no longer be
supplied inelastically. Specifically, households maximize:

U(x) = Eo

{
∞∑

t=0

βtu(xt)

}
,

where xt = (ct, lt) ∈ R+×[0, 1]. We now consider changing Assumptions 1
through 3 in Second 2 of the paper. For elastic labor supply, consider the
following assumption on the period utility u : R× [0, 1] 7→ R :

Assumption 6:
(i) The period utility function u is bounded, twice continuously differen-

tiable, strictly increasing, and strictly concave in (c, l).
(ii) The partial derivatives uc(c, l) and ul(c, l) satisfy the Inada condi-

tions:

limc→0 uc(c, l) = ∞, limc→∞uc(c, l) = 0, liml→0ul(c, l) = ∞.

(iii) ucl(c, l) ≥ 0.

Assumption 6(iii) is particularly important, as we require the marginal
rate of substitution ul

uc
to be non-decreasing in c and non-increasing in l to

construct a monotone operator. One should note, however, that Assumption
6(iii) is not sufficient enough to have the period utility function supermodular
in (c, l, k, K).11

Let f : K×[0, 1]×K×[0, 1]×Z summarize the production possibilities for
the firm in any given period, where K is a compact set defined similarly as in
Section 2. The technology allows for externalities in the production process
(that is, f also depends on per capita aggregates).

Assumption 7: The production function satisfies,
(i) f(0, 0, K, N, z) = 0 for all (K, N, z) ∈ K× [0, 1]× Z,

11The setup is more general than Greenwood and Huffman [20], which only consider the
case where ucl = 0. Coleman [13] allows for ucl ≥ 0 and also some cases where ucl < 0
but considers a restricted homothetic class of preferences and imposes more restrictions
(jointly on utility, production functions and distortions) to study the case of negative cross
partials of u. The same case of negative cross-partials of u can also be handled in our
setting also.
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(ii) f(k, n, K, N, z) is continuous, increasing, differentiable; in addition,
it is concave and homogeneous of degree one in (k, n).

(iii) f(k, n, K, N, z) also satisfies the standard Inada conditions in (k, n)
for all (K, N, z) ∈ K× [0, 1]× Z; i.e.,limk→0 fk(k, n, K, N, z) = ∞;
limn→0 fn(k, n, K, N, z) = ∞; limk→∞ fk(k, n, K, N, z) = 0.

Assumption 8: There exists a k̂(z) > 0, such that f(k̂(z), 1, k̂(z), 1, z)+
(1− δ)k̂(z) = k̂(z) and f(k, 1, k, 1, z) < k for all k > k̂(z), for all z ∈ Z.

Assuming that firms maximize profits under perfect competition, and
denoting r̄(K, z) as the rental rate on capital and w̄(K, z) as the wage rate,
these factor prices are continuous functions of the aggregate state variable.
The representative firm’s maximum profit is:

Π(r̄, w̄, K, N, z) = supk,n{f(k, n, K, N, z)− r̄k − w̄n}.
Anticipating the standard definition of competitive equilibrium with k = K
and n = N(S), for S ∈ K×Z = S, prices in the factor markets are r̄ = fk and
w̄ = fn. Also, given the assumed structure on the firm’s decision problem,
the Theorem of the Maximum ([10]) implies that Π is a continuous function,
and that solutions to the firm’s problem exist.

The household solves a standard dynamic capital accumulation problem,
which we describe by parametrizing the aggregate economy faced by a typ-
ical decision maker. If the aggregate per capita capital stock is K, then
households assume that per capita consumption decisions C, and per capita
labor supply N , and the recursion of the capital stock K ′ is given by,

K ′ = κ(S); C = C(S); N = N(S).

The aggregate economy consists of functions Ω = (w, r, κ, C, N) from a space
of functions with suitable restrictions needed to parameterize the household’s
decision problem in the second stage. Assume that the policy-induced equi-
librium distortions have the following standard form,

r = [1− πk(S)]r̄, and w = [1− πn(S)]w̄,

where π = [πk, πn] is a continuous mapping S →[0, 1)× [0, 1). We now place
one additional regularity condition on the distorted prices w and r.

Assumption 9: The vector of distortions π = [πk, πn] is such that the
distorted wage w = (1 − πn(K, z))w̄(K, N(K, z), z) and the distorted rental
rate r = (1− πn(K, z))r̄(K, N(K, z), z) satisfy:
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(i) w : K×Z → R+ is continuous, at least once-differentiable and (weakly)
increasing in K,

(ii) r : K+ × Z → R+ is continuous and decreasing in K such that,

lim
K→0

r(K, z) →∞

In other words, we assume that the distorted wage and rental rates behave ge-
ometrically as the non-distorted rates w̄, r̄ (which are the marginal products
of labor and capital, respectively).

Let the lump-sum transfers to each agent be given by a function d(S) =
πkK + πnN(K, z), so that the household’s total income (taking into account
the elastic nature of labor supply) is y(s) = rk + wN + (1 − δ)k + Π, the
sum of distorted rental and wage incomes, undepreciated capital and profits,
where s = (k, S) = (k,K, z) is the individual household state variable. Note
that y(s) is a continuous function. The household feasible correspondence
Ψ(s) for the distorted economy then consists of the set of (c, k′) ∈ R2

+ and
l ∈ [0, 1] satisfying the following constraint:

c + w(1− l) + k′ = y,

given (k,K, z) � 0. Notice that Ψ(s) is well behaved: In particular, since
Π is continuous, Ψ is a non-empty, compact and convex-valued, continuous
correspondence.

The households dynamic decision problem is summarized by the Bellman
equation:

J(s) = sup(c,l,k′)∈Ψ(s)u(c, l) + β

∫
Z
J(s′)χ(z, dz′).

The first-order condition for the household’s problem can be written as:

ul(c, l)

uc(c, l)
= (1− πn(S))fn(K, N, z), (7)

which determines the equilibrium (intra-period) relationship between con-
sumption and leisure, and:

uc(c, l) = β

∫
Z
uc(c(K

′, z′), l(K ′, z′))r(K ′, z′)χ(z, dz′), (8)

which governs the relationship between consumption in two consecutive time
periods.
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Under Assumptions 6 and 7, one can easily establish that the solution
l∗(c, K, z) to the (intra-period) first order condition (5):

ul(c, l
∗(c, K, z))

uc(c, l∗(c, K, z)
= (1− πn(S))fn(K, 1− l∗(c, K, z), K, z)

is decreasing in c and increasing in K. Given a candidate equilibrium function
c(S), we rewrite the Euler equation (6) in equilibrium using l∗ as,

uc(c, l
∗(c, K, z)) = β

∫
Z
uc(c(Fc−c, z′), l∗(c(Fc−c, z′), K ′, z′))r(Fc−c, z′)χ(z, dz′),

where Fc = f(K, 1− l∗(c, K, z), z) + (1− δ)K, and we use this last equation
to define a nonlinear operator that yields a strictly positive fixed point in the
space H̄ of candidate consumption functions.

Since the class of preferences considered in this model is larger than in
Section 2, the space H̄ differs from H0. It is defined as follows. First, define
l̂(S) as the solution to,

ul(f(K, 1− l̂(S), z), l̂(S))

uc(f(K, 1− l̂(S), z), l̂(S))
= (1− πn(S))fn(K, 1− l̂(S), z),

which implies that l̂(S) is the amount of leisure if everything today is cur-
rently invested. Since, in general, the amount of consumption is less than
f , leisure, which is positively related to consumption, is therefore less than
l̂(S): l̂ thus defines an upper bound on output. It is used to define a can-
didate set of consumption functions. Second, define F u(S) = F u(K, z) =
f(K, 1− l̂(K, z), z) + (1− δ)K.

Definition: Consider the space H̄ of consumption functions h : S → R
such that

(i) h is continuous;
(ii) h(S) ∈ [0, F u(S)];
(iii) uc(h(S), l∗(h(S), S)) is decreasing in h;
(iv) uc(h(S), l∗(h(S), S)) is decreasing in K;
(v) For any K2 ≥ K1, h satisfies:

0 ≤| h(K2, z)−h(K1, z) |≤| F (K2, l
∗(h(K2, z), K2, z)−F (K1, l

∗(h(K1, z), K1, z) | .
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Equip H̄ with the Sup norm and the standard pointwise partial order.
A standard argument shows that the space of consumption functions H̄ is
a closed, pointwise compact, and equicontinuous set of functions. By the
Arzela-Ascoli theorem (See Royden [38]) H̄ is a compact.

As in Section 2, given any h ∈ H̄, the operator A is defined implicitly
from the Euler equation: Ah(K, z) is the solution for y of:

uc(y, l∗(y, K, z)) = β

∫
Z
uc(h(Fy−y, z′), l∗(h(Fy−y, z′), Fy−y, z′))r(Fy−y, z′)χ(z, dz′).

We refer to Datta, Mirman and Reffett [15] for the proof of the following

Lemma.

Lemma 19 Under Assumptions 6 through 9, A maps H̄ into itself and is
monotone and continuous.

Proposition 20 Under Assumptions 6 through 9, the set of fixed points of
A : H̄ → H̄ is non-empty and there exists a maximal fixed point h∗ ∈ H̄.
The sequence {AnF}∞n=0converges uniformly to h∗, uniformly. Further, the
maximal fixed point is strictly positive ( h∗ > 0).

Proof: The first result follows from the fact that A is monotone and H̄ is
compact and therefore chain complete. Note AF ≤ F and A0 ≥ 0, therefore
by application of Tarski’s theorem the operator A has a fixed point. By
continuity of A, the sequence {AnF}∞n=0 converges to the maximal fixed point
h∗ and since S is compact, the convergence in uniform. The second property
(positivity) follows from an obvious modification of the main theorem in
Greenwood and Huffman [20].

Uniqueness of equilibrium can be established through an argument related
to that in Section 2 of the paper. Consequently h∗ > 0 is the unique
equilibrium.

4.3 Nonpaternalistic Altruism

The Euler equation method can be applied to a simple version of the non-
paternalistic altruism models studied in Ray[36], where altruism is confined
to one’s immediate successor and takes a separable form. Distortions can be
introduced in the setup in the same manner as in Section 2. For simplicity,
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we discuss the application of the Euler equation method in the absence of
distortions. There is a continuum of agents each living for one period. An
agent in period t divides his output between consumption and investment,
and, at the end of the period, gives birth to a new agent and dies. Output
(before taxes and subsidies) of his descendant in period t + 1 is obtained
through a production technology represented by the function f , which ex-
hibits constant returns to scale in private inputs. Production takes place in
the context of perfectly competitive markets for both the output good and
the factors of production.

Let Vs be the utility of generation s. The preferences of each generation
are represented by a simple non-paternalistic utility function v which maps,
for each t, (ct, Vt+1) into utilities of generation t. We assume that v is time
separable, and therefore takes the form:

v(ct, Vt+1, zt) = u(ct) + βEtVt+1,

where 0 < β < 1. Also, assume that period utility u satisfies Assumption 1
of Section 2.

Agents are endowed with a unit of time which they supply inelastically
to competitive firms. In the absence of distortions, let f(k, z) be the output
available for an agent to share between his consumption and the bequest to
his descendant. We make the following assumptions:

Assumption 10. f(k, K, z) is continuous and strictly increasing in its
argument, continuously differentiable and strictly concave in its first argu-
ments. In addition, f(0, z) = 0 and limk→0f1(0, z) = ∞ for all z ∈ Z.

Assumption 11. There exists a k̂(z) > 0, such that f(k̂(z), z) = k̂(z)
and f(k, z) < k for all k > k̂(z), for all z ∈ Z.

The maximization problem associated with an agent in period t is:

max
c
{u(c) + βEz[Vt(f(K, z)− c, z′)]},

in which c is chosen in the compact interval Γ(K, z) = [0, f(k, z)]. Our
concept of equilibrium follows the one in Ray[36].

Definition: A stationary equilibrium is a vector (V ∗, c∗) where V ∗ is
an indirect utility function, or value function, and c∗ a consumption policy,
such that:

(ii). The value function V ∗ satisfies:

V ∗(K, z) = sup
c∈Γ(K,z)

{u(c) + βEz[V
∗(f(K, z)− c, z′)]}.
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(ii). The optimal consumption policy satisfies:

c∗(K, z) = arg max
c∈Γ(K,z)

{u(c) + βEz[V
∗(f(K, z)− c, z′)]}.

To study Markovian equilibrium for this economy, note that existence of
a unique bounded, continuous, strictly increasing, strictly concave in its first
argument value function V ∗ with an envelope condition for its first argument
is a standard result. Consequently, the optimal policy function necessarily
satisfies the Euler equation:

u′(c∗(K, z)) = βEz{u′[c∗(f(K, z)− c∗(K, z), z′)]f1(f(K, z)− c∗(K, z), z′)}.

An equilibrium consumption is then a strictly positive solution c∗(K, z) > 0
to this Euler equation. Therefore for economies operating under Assump-
tions 10 and 11, a similar analysis to that of Section 2 applies to this problem,
and the sequence {Anf}∞n=0 converges uniformly to the unique Markovian
equilibrium.

5 Suggestions for Future Research

In this paper we have discussed methods of constructing competitive equilib-
rium for a broad class of strongly concave infinite horizon economies. The
methods restrict attention to continuous Markovian equilibrium. In the
smooth case of Section 2, we construct a closed and equicontinuous subset
of bounded continuous functions in the C0 topology. This is a compact set
(in the C0 topology). One open question is whether the equilibrium func-
tion is actually once differentiable? For Pareto optimal environments, this
question is answered in the work of Araujo and Scheinkman [8] and Santos
[39]. It remains an open question if the equilibrium in Coleman [12] is once
differentiable. The answer to this question is potentially of great interest.

One reason for an interest in the existence of smooth Markov equilibrium
is that when equilibrium are smooth, the error bounds of Santos and Vigo
[41] and Santos [43] can be shown to apply. Further, one logical method to
obtain a bound in the variation of the derivative of functions governing the
Markov equilibrium is to use the variation in the derivative of the production
function. In such a case, one might be able to produce a natural estimate
of the error bounds for numerical solutions to the problem. Second, when
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estimating nonlinear rational expectations models with simulated methods
of moments procedures, conducting asymptotic analysis of the estimators is
facilitated if the equilibrium is at least once differentiable in the parameters
of the model. Topological methods will most likely need to be employed to
address issues concerning the smoothness of Markov equilibrium, as spaces
of once differentiable functions do not have a lattice structure.

In the Euler equation methods, the role of strong concavity is crucial.
When the value function is appropriately concave, the (optimal) best re-
sponses of each agent are single valued continuous mappings, and this greatly
simplifies the analysis. If we relax the strict concavity property in competi-
tive environments the methods have to be changed. Indeed, the Euler equa-
tion method in Section 2 is likely to fail, for once we lose strong concavity
of the value function, continuous selections in general no longer exist in the
best response mappings. In this case, therefore, the Euler equation method
has little applicability. Mirman, Morand, and Reffett [33] relax strict con-
cavity and show existence by extending the value function iteration method
of Section 3 by using Zhou’s generalization of Tarski’s theorem (see Zhou
[56]). Further, when using the so-called induced set order of Topkis [52],
the monotone comparative analysis like that obtained in Section 3 is once
again available. However, having lost uniqueness, the strong comparative
analysis results, like those discussed in Milgrom and Shannon [31] are not
available. One interesting way of extending the results in Section 3 are to
find new orders under which the single crossing property between the controls
and the parameters can be investigated. In the present work, only Euclidean
orders are studied. It is possible though that more general results might be
forthcoming by employing a richer class of orders for the parameters (which
are functions in our case), thereby yielding additional monotone iterative
procedures useful for computing and constructing Markovian equilibrium.

Finally, the monotone methods discussed in this paper could prove very
useful in studying dynamic games (for instance policy games between two
countries). It is well known that in these environments, even if the return
functions are strictly concave, the value functions for such dynamic games
are generally not concave. While topological methods based upon single val-
ued operators seem difficult to apply, the value function iteration method of
Section 3, however, appears very promising because it is based on supermod-
ularity and does not need concavity. For, at least the symmetric equilibrium
case discussed in Sundaram [46], it appears that the methods in Mirman,
Morand, and Reffett [33] might work. This is part of our agenda for future
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research.
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