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Abstract

In applied work in macroeconomics and finance, nonoptimal infinite
horizon economies are often studied in which the state-space is unbounded.
Important examples of such economies are single-sector growth models
with production externalities, valued fiat money, monopolistic competi-
tion, and/or distortionary government taxation. Although sufficient con-
ditions for existence and uniqueness of Markovian equilibrium are well
known for the compact state space case, no similar sufficient conditions
exist for unbounded growth. This paper provides such a set of suffi-
cient conditions, and presents a computational algorithm that will prove
asymptotically consistent when computing Markovian equilibrium.
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1 INTRODUCTION

This paper presents existence and uniqueness results of Markovian equilibrium
for a broad class of dynamic non-optimal single-sector stochastic unbounded
growth models used in applied macroeconomics and public finance. The prim-
itive data describing the class of models under consideration include economies
with a diverse set of potential equilibrium distortions such as distortionary taxes,
valued fiat money, monopolistic competition, and various types of production
externalities. The state space may be unbounded, and therefore not compact.
While there is vast literature on unbounded endogenous growth, there are no
general results establishing sufficient conditions under which there exist Marko-
vian equilibria for such models, let alone sufficient conditions under which the
equilibrium is unique.

The methodology in this paper is related to the Euler equation approach
discussed in an important series of recent work on “monotone-map” methods
pioneered in Coleman (1991) and Greenwood and Huffman (1995). In a sem-
inal paper, Coleman (1991) proves existence of equilibrium for economies with
an income tax under a standard condition concerning the boundedness of the
production function, a condition that is sufficient to guarantee compactness of
the state space. This compactness of the state space is critical in the work
of Coleman (1991) and in all subsequent work (in particular, Greenwood and
Huffman (1995) and Datta, et al (2002)), because it implies that the candidate
set of equilibrium consumption (or investment) functions is compact in a uni-
form topology. The compactness property of the equilibrium set then allows
to demonstrate that a nonlinear operator has the appropriate order continu-
ity property, and that its domain (and range) is chain complete. Given these
two properties, a version of Tarski’s theorem presented in Dugundji and Granas
(1982) leads to the existence argument. While this is precisely the existence
proof in Coleman (1991), Greenwood and Huffman (1995) follow a related argu-
ment to demonstrate existence of non-optimal equilibrium in a version of Romer
(1996) unbounded growth model that has a stationary representation. Such
stationary representation exists in the case of log utility and Cobb-Douglass
technology, so that the problem can be posed on a compact state space, but it
is not clear how the argument can be generalized to other choices of promitives
(for instance utility outside the CES class). Our work systematically explores
this issue for the unbounded growth case, and provides an affirmative general
result.

It is important to distinguish this paper from the recent work of Coleman
(2000) and Datta, et.al (2002).1 These papers, based on the important and
innovative proof of uniqueness in Coleman (2000), demonstrate uniqueness of a
continuous Markovian equilibrium consistent with a monotone investment func-
tion (and in Coleman (2000), additionally, a monotone consumption function)
relative to a very large class of candidate continuous Markovian equilibrium.

1The Datta, et al (2002) paper concerns issues of existence and uniqueness in models of
bounded growth with elastic labor supply, and the method of proof of uniqueness is somewhat
different than Coleman (2000), but very related.
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First, a careful reading reveals that the method of proof of existence of Marko-
vian equilibrium in both of these papers does not apply when the state space is
not compact. Without compactness, existence of Markovian equilibrium is not
guaranteed, and thus knowledge of its uniqueness (by itself) is not particularly
useful. Second, the proof of existence in both Coleman (2000) and Datta, et.al
(2002) relies upon the contraction mapping theorem under bounded returns
and state space, which cannot be directly applied in the context of unbounded
growth. For example, the key assumptions in Coleman (2000) on the primitive
data of the economy (i.e., Assumption 1 and 2 ) are not sufficient to demon-
strate that a value function exists, and that an Euler equation can therefore be
derived. Indeed, these assumptions allow for both production and utility to be
unbounded, so that the return function may be unbounded as well; as discussed
in Stokey et al. (1989) and Alvarez and Stokey (1997), the value function in
such cases may not be defined, and studying an Euler equation to characterize
solutions is then inappropriate. Uur work in the present paper resolves this
issue.

The monotone method developed in this paper is not topological, but rather,
is built upon the monotonicity properties of a particular nonlinear operator and
the lattice completeness properties of the underlying domain of this operator.
This operator is a self-map on a complete lattice of candidate equilibrium func-
tions, and its monotonicity implies that it has a fixed point, through Tarski’s
fixed-point theorem.2 Since we rely on an order-based construction as op-
posed to a purely topological one, the concerns of boundedness, compactness
and continuity do not enter into the formulation of the existence and unique-
ness problem, and we are able to prove existence within a very sharp set of
monotone Markov processes, and uniqueness within a large class of Markovian
equilibrium (not necessarily monotone). In addition, the monotone method
employed is constructive, and allows the discussion of issues associated with
computation as well as characterization of Markovian equilibrium.3 In particu-
lar, we provide some comparative statics results in some key parameters of the
underlying economy. The technology is required to have constant returns to
scale in private inputs and to obey some standard first- order and second-order
conditions. However, unlike in Coleman (1991), we do not make any assumption
guaranteeing compactness of the domain of the endogenous state variable, and
we introduce externalities in the production process. Utility obeys some stan-
dard assumptions, except for a boundedness requirement which can be relaxed
for economies with homogeneous preferences and constant returns to scale.

The paper is organized as follows. Section 2 presents the class of environ-
ments studied. Section 3 proves existence of Markovian equilibrium as the fixed

2The methodology is closely related to the lattice theoretic constructions in recent work
reported in Mirman et al. (2002) within the context of bounded state spaces.

3Coleman (1991) discusses the advantages of order theoretic fixed-point theory versus
purely topological fixed point theory (e.g., Brouwer, Schauder, Fan-Glicksberg types of fixed-
point theorems). The latter class of fixed-point theorems are existential, and therefore not
useful for discussing the computation of infinite dimensional fixed-point problems. The former
class, as they are constructive, can often be used to show that extremal fixed points can be
computed by successive approximation.
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point of a monotone operator A mapping a complete lattice into itself. The
characterization of the set of equilibria is refined by constructing an algorithm
converging to the maximal fixed point, and by deriving some simple comparative
statics results in the strong set order. Section 4 shows that all the fixed points
of the mapping A are fixed points of another mapping, denoted Â, and that
Â has at most one interior fixed point. This generalization of a method used
in Coleman (2000) and Datta et al. (2002) forms the basis of our uniqueness
argument. Section 5 provides some examples and concludes.

2 THE MODEL

Time is discrete and indexed by t ∈ T = {0, 1, 2, ...}, and there is a continuum
of infinitely-lived and identical household/firm agents. The aggregate state
variables for this economy consist of endogenous and exogenous variables and
are denoted by the vector S. Uncertainty comes in the form of a finite state first-
order Markov process denoted by zt ∈ Z with stationary transition probabilities
π(z, z′).4 Let the set K ⊂ R+ contain all the feasible values for the aggregate
endogenous state variable K, and define the product space S : K× Z. Since
the household also enters each period with an individual level of the endogenous
state variable k, we denote the state of a household by the vector s = (k, S) with
s ∈ K× S. We assume that the class of equilibrium distortions are consistent
with the representative agent facing a set of feasible constraints summarized by
a correspondence Ω(k, k′, S) ⊂ K×K× S in which k′ is the next period value of
the variable k. While more specific details will be provided below, for now we
can think of Ω as simply the graph of the non-empty, continuous, convex and
compact valued feasible correspondence for the household Γ(s) : K× S → K.

We formulate the economy as in Coleman (1991), although Greenwood and
Huffman (1995) show that our problem can be posed as an existence of Markov
equilibrium problem for a broad class of models used in the macroeconomic lit-
erature (e.g., models with nonconvex production sets, monetary economies like
many cash-in-advance models and shopping time models, monopolistic compe-
tition models, etc.). Each household assumes that the aggregate endogenous
state variable evolves according to a continuous function K

′
= h(K, z), and owns

an identical production technology which exhibits constant returns to scale in
private inputs for producing the output good. Production may also depend on
the equilibrium level of inputs, and by allowing the technologies to be altered
by per capita aggregates, the case of production externalities is included. Pro-
duction takes place in the context of perfectly competitive markets for both the
output good and the factors of production.

4To simplify the exposition, we use a finite state space for the exogenous shocks. See
Hopenhayn and Prescott (1992) for a discussion of how to handle shock processes with more
general state spaces, and what additional restrictions this case places on the transition pro-
cesses for the shocks.
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2.1 Assumptions

In each period, households are endowed with a unit of time which they supply
inelastically to competitive firms. With the capital-labor ratio denoted by k,
and the per-capita counterpart of this measurement by K, we assume that the
production possibilities are represented by a function f(k,K, z). A household’s
income before taxes and transfers is exactly:5

f(K, K, z) + (k −K)f1(K, K, z),

where the equilibrium condition K = k has been imposed on the firm’s problem.
The government taxes all income at the rate t1(K, z) and transfers the lump
sum amount t2(K, z) to each household. In period t, a household must decide
on an amount c to consume, and the capital-labor ratio carried over to the next
period is thus:

k′ = (1− t1(K, z))[f(K, K, z) + (k −K)f1(K, K, z)] + t2(K, z)− c.

We make the following assumptions on the primitives data:

Assumption 1. The production function f(k, K, z) and the function govern-
ing taxes and transfers t(K, z) are such that:

(i). f : K×K× Z → K is continuous and strictly increasing. Further, it
is continuously differentiable in its first two arguments, and strictly concave in
its first argument.

(ii). f(0,K, z) = 0 and limk→0f1(0,K, z) = ∞ for all (K, z) ∈ K× Z.
(iii). t1 and t2 are continuous and increasing in both their arguments.
(iv). The quantity (1− t1(K, z))f1(K, K, z) is weakly decreasing (i.e., non-

increasing) in K.

Aside from the lack of any boundedness condition on the production function
f , these restrictions are standard (e.g., Coleman (1991)). Given the nonexis-
tence of continuous Markovian equilibrium results presented recently in the work
of Santos (2000) and Mirman et al. (2001), it seems that assumptions (iii) and
(iv) are necessary for the existence of continuous Markovian equilibrium.6

For each period and state, the preferences are represented by a period utility
index u(ci), where ci ∈ K ⊂R+ is period i consumption. Letting zi = (z1, ..., zi)
denote the history of the shocks until period i, a household’s lifetime preferences
are defined over infinite sequences indexed by dates and histories c = (czi) and
are given by:

U(c) = E

{ ∞∑
i=0

βiu(ci)

}
, (1)

5Many economies with production externalities, monetary distortions, and monopolistic
competition are equivalent to economies with taxes. Therefore, although we write the equi-
librium distortions in the form of taxes, we cover a much broader set of environments used in
applied work.

6Santos (2000) presents a counterexample which highlights the need for monotonicity of
distorted returns in models models such as ours. In particular, the non-existence of continuous
Markovian equilibrium relies on the non-monotonicity of the distorted return on capital.
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where the summation in (1) is with respect to the probability structure of future
shocks given the history of shocks, the transition matrix π, and the optimal plans
up to a given date i.

Assumption 27. The period utility function u : R+ → R is bounded, con-
tinuously differentiable, strictly increasing, strictly concave, 0 < β < 1, and
u
′
(0) = ∞.

2.2 Value Function and Equilibrium

The value function V associated with the household’s problem of choosing an
optimal consumption level satisfies the Bellman’s equation:

V (k,K, z) = sup
c∈Γ(k,K,z)

{u(c) + βEz[V ((1− t1(K, z))[f(K, K, z)

+(k −K)f1(K, K, z)] + t2(K, z)− c, h(K, z), z′)]} (1)

where the constraint set for the household’s choice of consumption is the com-
pact interval:

Γ(k,K, z) = [0, (1− t1(K, z))[f(K, K, z) + (k −K)f1(K, K, z)] + t2(K, z)].

Consider the complete metric space of bounded, continuous, real-valued
functions v : R+ × R+ × Z → R equipped with the sup norm, and W the
subset of functions that are weakly increasing and concave in their first argu-
ment. The following is a standard result in the literature (see, for instance,
Stokey et al., 1989).

Proposition 1. Under Assumptions 1 and 2, given any continuous aggregate
investment function h and any transfer policy function t2, there exists a unique
v in W that satisfies Bellman’s equation (2). Moreover, this v is strictly in-
creasing and strictly concave in its first argument. The optimal policy c(k, K, z)
is single valued and continuous in its first argument.

Note that v is generally not defined on a compact space, and that the proof
of this proposition relies on applying the contraction mapping theorem for an
operator defined on the Banach space C(X) with the topology of the uniform
convergence, without requiring X to be compact. However, the proof of exis-
tence and uniqueness of the value function in Stokey et al. (1989) relies crucially
on the assumption of boundedness of utility, so that the contraction mapping
theorem can be directly applied. Although there is no general theory for the
case of unbounded utility and unbounded growth, some progress has been made
by Alvarez and Stokey (1997) who demonstrate existence and uniqueness at

7The possibility of relaxing the boundedness assumption on u is discussed below.
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least with CES utility and constant returns to scale in private inputs to pro-
duction.8 In Section 5 below, we provide an illustration of our method for a
Romer type of model where utility is unbounded.

It is important to also note that the optimal policy c(k, K, z) is strictly
positive, that is c(k,K, z) > 0 when k > 0 and K > 0. Suppose that this is not
the case, i.e., that there exists (k,K) > 0 such that c(k,K, z) = 0. Consider
increasing consumption and decreasing investment by some amount ε > 0. The
per unit increase in current utility is [u(ε)−u(0)]/ε, while the per unit decrease
in expected future utility is βEt[v(k′,K ′, z′)− v(k′ − ε, K ′, z′)]/ε. However:

lim
ε→0

[u(ε)− u(0)]/ε = u′(0) = ∞,

and the utility gain can therefore be made arbitrarily large by choosing ε small
enough, while the utility loss are bounded since v is strictly increasing and con-
cave in its first argument (and k′ > 0 when c(k,K, z) = 0 and K ′ = h(K, z) > 0
as well). As a consequence, the policy of consuming nothing is not optimal.

We define an equilibrium as follows:

Definition: A stationary equilibrium consists of continuous functions h and
t2 mapping R++∗Z into R++ such that:

(i). All tax revenues are lump-sum redistributed according to the transfer
function t2 = t1f .

(ii). The aggregate investment function h is such that households choose to
invest according to the same rule:

h(K, z) = f(K, K, z)− c(K, K, z).

Proposition 2. Under Assumptions 1 and 2, if (h, t2) is an equilibrium with
the associated policy function c and value function v, then c(K, K, z) always
lies in the nonempty interior of Γ(K, K, z), and v is continuously differentiable
in its first argument k when k = K for all (K, z).

Note again that the standard proof (See, for instance Stokey et al., 1989)
relies on boundedness of utility, although the results have been extended to some
cases where utility functions can be bounded above by a linear transformation
of a CES utility.

Consequently, denoting c(K, z) = c(K, K, z), H(K, z) = (1−t1(K, z))f1(K, K, z)
and f(K, K, z) = F (K, z) for convenience, the optimal policy function neces-
sarily satisfies the Euler equation:

u′(c(K, z)) = βEz{u′[c(F (K, z)− c(K, z), z′)] ∗H(F (K, z)− c(K, z), z′)}, (3)

and an equilibrium consumption is a strictly positive solution c(K, z) > 0 to
this Euler equation.

8These results are extended in Miao (2001) to a larger class of primitives.
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3 EXISTENCE AND CHARACTERIZATION
OF EQUILIBRIUM

Since the seminal work of Arrow and Debreu, fixed point theorems have been
at the core of general equilibrium analysis, especially for establishing existence
of competitive equilibrium. Early work on existence appealed to topological
constructions such as Brouwer’s fixed point theorem, a theorem asserting that
a single-valued continuous mapping from a compact convex subset of a vector
space into itself has a fixed point.9 In the context of a recursive dynamic mon-
etary economy, Lucas and Stokey (1987) apply Schauder’s fixed point theorem
to establish that a nonlinear operator that maps a non-empty, closed, bounded
and convex subset of continuous functions C(X) defined on a compact subset
X into itself has a fixed point if it is continuous and if the underlying subset
is an equicontinuous set of functions. In the work of Jovanovic (1988), Bern-
hardt and Bergin (1992), and most recently Chakrabarti (2001), generalizations
of Schauder’s theorem for correspondences, the so-called Fan-Glicksberg class
of fixed point theorems, are used to establish the existence of equilibrium for a
class of large anonymous games and heterogeneous agent economies.

There are, however, some major impediments and limitations when attempt-
ing to apply these topological constructions to the class of unbounded growth
models considered in this paper. First is the standard problem of trivial fixed
points: The theorems of Schauder and Fan-Glicksberg are existential, but, un-
fortunately, the operators we study often contain trivial fixed points that cannot
be decentralized under a price system with strongly concave households. Ruling
out trivial fixed points would therefore require constructing domains of func-
tions that exclude from consideration such trivial elements, an often intractable
problem which would therefore make these theorems difficult to employ. Sec-
ond, to apply this collection of theorems, the state space X has to be compact,
which is obviously not the case for unbounded growth models. Third, proving
topological continuity of a nonlinear operator in a particular topology when the
state space is not compact often proves to be difficult task.

This leads one to consider fixed point arguments that are not topological
and more specific to the problem under consideration, i.e., that exploit some
additional structure of the particular problem being studied. An interesting
application of a non topological fixed point theorem is the case of bounded
growth models with equilibrium distortions: Coleman (1991) pioneered an
application of a version of Tarski’s fixed point theorem to demonstrate existence
of equilibrium in an infinite horizon stochastic framework with an income tax.
Tarksi’s theorem establishes that a monotone operator from a complete lattice
into itself has a fixed point.

Tarski’s fixed point theorem (Tarski, 1955). If f is an increasing mapping

9In more general situations, Kakutani’s fixed point theorem, Schauder’s fixed point theo-
rem, or the Fan-Glicksberg fixed point theorem are often required. All of these theorems are
topological in nature, and essentially extend the result of Brouwer to the case of correspon-
dences and infinite dimensional spaces.
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of a complete lattice X into itself, then the set of fixed points is a nonempty
complete lattice.

Coleman uses a version of this theorem for order continuous operator on
countably chain complete partially ordered sets, in a situation where there exist
two elements , l and u, that are mapped “up” and “down” , i.e. A(l) ≥ l and
A(u) ≤ u. With these additional hypothesis, the version of Tarski’s theorem due
to Dugundji and Granas (1982) can be applied, and the minimal and maximal
fixed points can be constructed by successive approximations. As emphasized
by Coleman, the advantage of using a version of Tarski’s fixed point theorem
with an explicit algorithm is to be able to rule out the zero consumption as the
maximal fixed point.10

This method thus seems promising for our problem.11 However, for the class
of models studied in Coleman (1991), a standard restriction on the production
function insures that the state space X is compact (in addition to being convex
and closed), which implies, through the Arzela-Ascoli theorem, that a set of
equicontinuous functions (endowed with the sup norm) defined on X is a count-
ably chain complete lattice because it is a compact subset of a Banach lattice of
continuous functions. Coleman then constructs a monotone and continuous op-
erator from this compact subset of a Banach lattice of continuous functions into
itself, and an application of a topological version of Tarski’s fixed point theorem
generates an algorithm that converges to the fixed point, shown to be unique
and strictly positive. Unfortunately, in distorted unbounded growth models
where X is not compact the strategy in Coleman (1991) cannot be directly ap-
plied because Coleman’s set of equicontinuous functions cannot easily be shown
to be a compact subset of a Banach lattice of continuous functions. Similarly,
the absence of compactness renders the proof of continuity of the operator very
difficult.

We show below that neither compactness of the state space nor continuity
of the operator are needed to prove existence of equilibrium. We demonstrate
that the set of functions considered in Coleman is in fact a complete lattice,
whether or not the state space is compact. The key insight is that continuity of
the candidate equilibrium policies need not be assumed because it is implied by
a double monotonicity assumption. This key insight enables us to use purely
order-based methods . We rely on a version of Tarski’s theorem due to Veinott
(1992) , which is a slightly stronger version of the main theorem in Abian and
Brown (1962) to produce additional characterizations of the set of fixed points.

10Greenwood and Huffman (1995) provide a weaker set of conditions than Coleman under
which the maximal fixed point is strictly positive.

11An alternative strategy could be to apply a fixed point theorem that combines continuity
of an operator mapping an ordered Banach space into itself with order preserving monotonicity
to deliver, under some conditions, a minimal and maximal fixed point (see Amann, 1976), as
discussed in Datta, Mirman, Morand and Reffett (2002) However, interesting Banach spaces
of functions are hard to come by for our environments, because they are vector spaces, which,
by definition, rule out any explicit bounds imposed on the functions (such as resource or
budget constraints).
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Theorem 1.12 Let (X,≥) be a complete lattice A : X → X an increasing
mapping. The set of fixed points of A is a non-empty complete lattice. Further,
the sets of excessive and deficient point (resp. s ≥ A(s) and s ≤ A(s)) are non-
empty complete lattices, and the greatest (resp. least) fixed point is the greatest
deficient point (resp. least excessive).

3.1 Existence

Consider the space E of functions h : X = R+ × Z → R , endowed with the
pointwise partial order ≤13, and satisfying the following conditions (recall that
F (K, z) = f(K, K, z) is continuous and strictly increasing in its arguments):

(i). 0 ≤ h(K, z) ≤ F (K, z).
(ii). h is weakly increasing in K.
(iii). F − h is weakly increasing in K.
Recall that a space (E,≤) is a lattice if it is endowed with two binary

operations for any two points h, g ∈ E referred to as the meet and the join
(denoted respectively h ∧ g and h ∨ g). These two operations are given as
follows:

(h ∨ g)(x, y, z) = max{h(x, y, z), g(x, y, z)}

and,
(h ∧ g)(x, y, , z) = min{h(x, y, z), g(x, y, z)}.

It is important to notice that the combined double monotonicity of h and F −h
implies that h ∈ E is a continuous function in K. This can be easily seen
graphically, as any discontinuous jump up of h would necessarily violate the
assumption that F − h is weakly increasing, and is demonstrated rigorously in
the proof of the following Lemma establishing an important property of E.14

Lemma 1. E is a complete lattice. Also, for all h ∈ E, h is continuous in
K.

In the footsteps of Coleman (1991), we define the mapping A on E from the
Euler equation (3) as follows:

u′((Ac)(K, z)) = βEz{u′[c(F (K, z)− (Ac)(K, z), z′)]4 (2)
·H[F (K, z)− (Ac)(K, z), z′]}

so that any fixed point of A is an equilibrium consumption function. Note that
0 is a fixed point of A (i.e., A0 = 0), and that AF ≤ F .

Lemma 2. Under Assumption 1-2, for any c in E, a unique A(c) in E
exists. Furthermore, the operator A is monotone.

12For a proof, see Veinott, 1992 Theorem 11.
13The pointwise partial order ≤ defined as h ≤ g if g(x′, y′, z′) ≥ h(x, y, z) for all

(x′, y′, z′) ≥ (x, y, z) in X, where the last inequality holds componentwise.
14Proofs are in the Appendix.
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Then, by Lemma 1-3, the operator A maps a complete lattice into itself and
is monotone. By Tarski’s theorem, the set of fixed point is a nonempty complete
lattice. Note that F is a deficient point (AF ≤ F ) and 0 is an excessive point
(A0 ≥ 0) so the hypothesis of Theorem 1 above are satisfied. The following
proposition, which follows directly from Theorem 1 above, states the existence
result of this paper.

Proposition 1. Under Assumption 1-2, the set of fixed points is nonempty,
and there exist greatest and least fixed points.

3.2 Maximal Fixed Point

As noted above, order based fixed point theorems are generally more than exis-
tential and can provide additional characterization of the set of fixed point. In
our problem, we exploit the order structure to establish a computational proce-
dure that converges to the maximal fixed point of the operator A, as stated in
the following proposition.

Proposition 2. The sequence {AnF}∞n=0 converges to the maximal fixed
point.

Denote c̃ the maximal fixed point, and consider the sequence of value func-
tions {v̂n}∞n=0 generated from the following recursion:

v̂n(k,K, z) = sup
c∈Γ(k,K,z)

{u(c) +

βEz[v̂n−1(f(k,K, z)− c, F (K, z)−An−1F (K, z), z′)]},

and with v̂0 ≡ 0. Our strategy is to demonstrate that the sequence v̂n con-
verges to the solution v of Bellman’s equation associated with the household’s
maximization problem. If {v̂n}∞n=0 converges to v, since by construction the
optimal policy function maximizing the right side of the previous equality, eval-
uated along the equilibrium path, is exactly An−1F (K, z), then by Theorem
9.9 in Stokey et al. (1989), the sequence of functions An−1F (K, z) converges
pointwise to the optimal policy associated with v, which we have demonstrated
must be strictly positive in Section 2. We now show that the above stated
convergence is true.

First, notice that the sequence {v̂n}∞n=0 is convergent. To demonstrate this
property, define the operator Tn as follows:

(Tn−1v̂n−1)(k,K, z) = sup
c∈Γ(k,K,z)

{u(c) +

βEz[v̂n−1(f(k,K, z)− c, F (K, z)−An−1F (K, z), z′)]},

for n ≥ 1, and v̂n = Tn−1v̂n−1 Obviously, each Tj is a contraction of modulus
β < 1 so that the sequence Tn ◦ Tn−1 ◦ ... ◦ T0(v0) is a Cauchy sequence, and
therefore converges to a unique limit.
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Second, applying the same argument as in Greenwood and Huffman (1995)
establishes that the sequence {v̂n}∞n=0 converges to v on any compact subset of
the state space. Together these two results imply that limn→∞{v̂n}∞n=0 = v.

3.3 Comparative Statics Results

The monotonicity of the mapping A can be exploited to derive comparative
statics results in some of the deep parameters of the problem (i.e., parameters
of the preferences and of technology). Recall that the set of equilibria is a
non-empty complete lattice, so, in the absence of uniqueness result, comparative
statics analysis requires defining orders on both the set of parameters considered
and on the set of equilibria.

We define the following two set orders. Consider a set Y , and two subsets
A,B ∈ P (Y ). The strong set order ≥a is defined on P (Y ) as follows:

A ≥a B iff for any a ∈ A and b ∈ B, a ∧ b ∈ B and a ∨ b ∈ B.

Then, in Veinott’s (1992) terminology, we show that the set of equilibria is
ascending in the strong set order in a parameter t ∈ T , and consequently, that
the minimal and maximal fixed points also increase in this parameter.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied for
each mapping At belonging to the set {At : X → X, t ∈ T}, where (T,≥T ) is a
poset. If At is increasing in t, that is if t′ ≥T t implies that, for all x in X,
At′x ≥ Atx, then the minimal and maximal fixed points of At are increasing in
t.

For an application of this result, consider a perturbation in the discount rate
β. Since the right side of equation (4), which defines implicitly the mapping
A, is increasing in β, as a consequence, At=β(c) is increasing in β ∈]− 1, 0[= T ,
where T is endowed with the dual order ≥T on the real line (i.e., β

′ ≥T β if
β
′ ≤ β). By Theorem 2, the maximal and minimal fixed points increase with

t (i.e., decrease with β). For another application, consider the tax rate t ∈ T ,
where T is the set of continuous functions t(K, z) ∈ [0, 1] that are monotone
in K.15 Endow T with the standard pointwise Euclidean order for a space of
functions, i.e., t′ ≥T t if t′(K, z) ≥ t(K, z) for all (K, z). Then At′c ≥ Atc in
the order defined on E and the equilibrium set (the set of fixed points of the
operator At) is monotone in t the strong set order.

4 UNIQUENESS OF EQUILIBRIUM

This section establishes uniqueness of equilibrium under fairly standard assump-
tions by following a method similar to the one in Coleman (2000) and Datta et
al. (2002). As discussed in Coleman (1991), in the presence of uncertainty the
concavity of an operator is not sufficient for proving uniqueness of the fixed point

15And also consistent with Assumption 1.
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of the operator. However, pseudo concavity together with some monotonicity
property are sufficient properties to establish that result. In this section of the
paper, we demonstrate that any fixed point of the operator A is also a fixed point
of another operator Â which is shown to be pseudo concave and x0-monotone.
This method, also used in Coleman (2000) and Datta et al. (2002), is based
on a theorem in Coleman (1991), which we generalize for a non-compact state
space.

Theorem 3.16 An operator Â that is pseudo concave and x0-monotone has
at most one strictly positive fixed point.

The operator Â is constructed as follows. First define the set of functions
m : R+ × Z → R such that:

(i). m is continuous;
(ii). For all (K, z) ∈ R+ × Z, 0 ≤ m(K, z) ≤ F (K, z);
(iii). For any K = 0, m(K, z) = 0.
Denote M this set, which is endowed with the standard pointwise partial

ordering. Consider the function Ψ(m(K, z)) implicitly defined by:

u′[Ψ(m(K, z))] =
1

m(K, z)
for m > 0, 0 elsewhere.

Naturally, Ψ is continuous, increasing, limm→0 Ψ(m) = 0, and limm→F (K,z) Ψ(m) =
F (K, z). Using the function Ψ, we denote:

Ẑ(m, m̃,K, z) =
1
m̃
− βEz

{
H(F (K, z)−Ψ(m̃(K, z)), z′)
m(F (K, z)−Ψ(m̃(K, z)), z′)

}
,

and consider the operator Â:

Âm = {m̃ | Ẑ(m, m̃,K, z) = 0 for m > 0, 0 elsewhere}.

Since Ẑ is strictly increasing in m and strictly decreasing in m̃, and since
limm̃→0 Ẑ = +∞ and limm̃→F (K,z) Ẑ = −∞, for each m(K, z) > 0,with K > 0,

and z ∈ Z there exists a unique Âm(K, z).

Note that we can relate each orbit of the operator A to a specific orbit of the
operator Â in the following manner. Given any c0 in the order interval [0, F ]
of E, there exists a unique m0 in M such that:

m0(K, z) =
1

u′(c0(K, z))
.

By construction, there exists a unique Âm0 that satisfies Ẑ(m0, Âm0,K, z) = 0,
that is:

1

Âm0(K, z)
= βEz

{
H(F (K, z)−Ψ(Âm0(K, z)), z′)

m0(F (K, z)−Ψ(Âm0(K, z)), z′)

}
16The proof of Coleman (1991) is sligthly amended in the Appendix to address the case of

a non-compact state space.
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or, equivalently (from the definition of c0):

1

Âm0(K, z)
= βEz{H(F (K, z)−Ψ(Âm0(K, z)), z′)

·u′(c0(F (K, z)−Ψ(Âm0(K, z)), z′))}.

By construction, Ac0 satisfies:

u′((Ac0)(K, z)) = βEz{H(F (K, z)−Ac0(K, z), z′)
·u′(c0(F (K, z)−Ac0(K, z), z′))}.

Therefore, by uniqueness of Âm0 it must be that 1/Âm0 = u′(Ac0) (or, equiv-
alently, that Ψ(Âm0) = Ac0)). By induction, it is trivial to demonstrate that
for all n = 1, 2, ... Anc0 = Ψ(Ânm0).

It is easy to show that to each fixed point of the operator A corresponds a
fixed point of the operator Â. Indeed, consider x such that Ax = x and define
y = 1/u′(x) (or, equivalently Ψ(y) = x). By definition, x satisfies:

u′(x(K, z)) = βEz{H(F (K, z)− x(K, z), z′)
·u′(x(F (K, z)− x(k, z), z′))} for all (K, z).

Substituting the definition of y into this expression, this implies that:

1
y

= βEz
H(F (K, z)−Ψ(y(K, z)), z′)
y(F (K, z)−Ψ(y(k, z), z′))

,

which shows that y is a fixed point of Â. We have the important following
result:

Lemma 3. The operator Â is pseudo concave and x0-monotone.

This Lemma, in conjunction Theorem 3, stated in the beginning of this
section, implies that Â has at most one fixed point. Thus, A also has at most
one fixed point, although at least one (obtained as limn→∞AnF ). Therefore,
A has exactly one fixed point.

5 EXAMPLES AND CONCLUDING REMARKS

This paper provides an important extension of the work of Coleman (1991, 2000)
and Greenwood and Huffman (1995) to the case of unbounded growth. Such
an extension is important, as many models studied in the applied growth and
macroeconomics literature are formulated on unbounded state spaces. It is not
trivial, since all the standard fixed point results used in the literature do not
apply to our problem, because relaxing the assumption of a compact state space
makes it very difficult to establish suitable algebraic or topological structures
on particular spaces of functions. However, the mapping corresponding to the
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recursive problem, expressed in the form of iterations on an operator defined via
an Euler equation, maps a complete lattice into itself and has critical monotone
properties. Exploiting these order-theoretic notions, we prove existence of
equilibrium by applying Tarski’s theorem. To prove uniqueness, we demonstrate
that the fixed points of this mapping are also fixed points of another mapping,
which we know has at most one fixed point. Finally, we show that the unique
equilibrium can be obtained as the limit of a simple algorithm, and we discuss
some issues related to comparative statics. In particular, we show how to
conduct some simple comparative statics on the space of economies considered
in the paper.

We now briefly demonstrate how to apply the results to some standard frame-
works used extensively in the macroeconomic literature. We begin with the case
of unbounded growth with nonconvex technologies.

Example 1. Endogenous growth with constant income tax and un-
bounded utility. Consider the simple growth economy where a representative
agent’s preferences are represented by

∑∞
t=0 βtu(ct), the production technology

is zkαK1−α with 0 < α < 1, and income is taxed at the constant rate τ . Define
Ψ(k, K, z) = [0, (1−τ)(zKαK1−α+(k−K)αzKα−1K1−α+t2(K, z)]. Existence
and uniqueness of a value function satisfying Bellman’s equation:

v(kt,Kt, zt) = sup
kt+1∈Ψ(kt,Kt,zt)

{u[(1− τ)(ztK
α
t K1−α

t + (kt −Kt)αztK
α−1
t K1−α

t ) + t2(Kt, zt)− kt+1]

+βEt(v(kt+1, h(Kt, zt), zt+1))}

can be established when u(c) satisfies Assumption 2, following a standard argu-
ment in Stokey et al. (1989). Note that Assumption 1 is satisfied: In particular
the after tax marginal product of capital , (1− t1(K, z))f1(K, K, z) = (1− τ)αz
is independent of K.

For any c in E, define Ac as the solution of the following nonlinear equation:

u′(Ac(k, z)) = βEz{u′(c(zK −Ac(K, z), z′)) ∗ (1− τ)αz′}.

A direct application of our results shows that the unique fixed point can be
computed as the limit of the sequence (F,AF,A2F, ....) and that it is decreasing
in β.

It is important to note that, in some cases, it is possible to relax the assump-
tion of bounded utility. In particular, when utility is of the form u(c) = (1/θ)cθ,
where 0 < θ < 1, the existence and uniqueness of a value function can be estab-
lished, as demonstrated in the Appendix. The case θ = 0, that is, u(c) = ln c,
addressed in Greenwood and Huffman (1995), is facilitated by the property that
it generates a setup that has a stationary representation. As noted before, there
is no general theory that guarantees existence of a value function, let alone ex-
istence of an Euler equation, when an unbounded return function is combined
with a unbounded state space. Additional extensions of this example should be

easily obtain using the recent results of LeVan and Morhaim (2002).
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Example 2. Government spending and endogenous growth. As a
second example, consider a discrete time version of Barro (1990) where prefer-
ences of a typical agent are represented by

∑∞
t=0 βtu(ct), the production technol-

ogy is K1−αgα, where government spending g is financed contemporaneously by
a flat-rate income tax τ . If we asume a constant tax rate τ and a balanced gov-
ernment budget each period this setup is simply an AK model, as pointed out
by Barro, since balancing the budget requires gt = τK1−α

t gα
t , that is, gt = BKt

where B = (τ)1/(1−α). Consequently, disposable income of an agent in period t
is (1− τ)[BαKt + (kt −Kt)Bα(1− α)].

With utility of the form u(c) = (1/θ)cθ, where 0 < θ < 1, the existence and
uniqueness of a value function can be established following a similar argument
as for Example 1 above (See Appendix). The Bellman’s equation associated
with an agent’s maximization problem is:

v(kt,Kt) = sup
kt+1∈Ψ(kt,Kt)

{u[(1−τ)(BαKt+(kt−Kt)Bα(1−α))−kt+1]+βv(kt+1, h(Kt))}

where Ψ(kt,Kt) = [0, (1 − τ)(BαKt + (kt −Kt)Bα(1 − α))]. The Euler equa-
tion associated with the previous Bellman’s equation generates the operator A
defined implicitly by:

u′(Ac(K)) = βu′(c((1− τ)BαK −Ac(K))) ∗ (1− τ)(1− α)Bα

Example 3. Cash in Advance Economy. As a third example, we show
how to use our methodology to study an unbounded monetary economy. In
this case, we assume for convenience that utility is bounded, although (given the
above examples) we could consider a class of unbounded return functions often
used in the literature. Our example is basically a cash-in-advance economy with
exogenous financial constraints, but the method can be adapted to endogenous
cash in advance models such as Lacker and Scheft (1996), to shopping time
models, and also to the recent models such as Alvarez et al. (2000).

Consider a deterministic version of the economy described in Stockman
(1981), for which the primitive data satisfy the unbounded growth assump-
tions in Jones and Manuelli (1990).17 That is, for simplicity f is deterministic,
and sufficiently productive relative to a “inflation tax” t1. The primitive data
satisfy Assumption 1, 2 and:

Assumption 1’. f(K) is such that f(K) = AK +f(K) where f(K) satisfies
the following limiting conditions limK→∞ f ′(K) = 0, and A satisfies β(A(1 −
t1(K) + 1− δ) > 1.

17A version of this economy for bounded growth using the equivalence between monetary
economies and economies with state contingent taxes is studied in Coleman (1992). One
can generalize the results in this application to endogenous cash-credit models with elastic
labor supply following the construction in Datta et al. (2002), using the main results in our
present paper within an economy with unbounded growth. Finally, as in Datta, Mirman, and
Reffett, the underlying fixed point argument takes place on an closed equicontinuous subset
of continuous functions in the uniform topology (which is a complete lattice), and arguments
of the main theorem of the paper can be generalized to problems with elastic labor supply.
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We will specify how the mapping t1 is constructed in a monetary economy in
a moment. The state of the aggregate economy is S = K and a monetary agent
introduces money into the economy according to a state dependent technology
j(K) so that:

M ′ = j(K)M

where j is continuous and M is the per capita level of the money stock. Let l(K)
be a lump sum monetary transfer, and therefore M ′ = M + l(K). Assume that
the (normalized) price level is given by a continuous mapping p(K) = P (K)/M
and the recursive structure for per capita measurement of capital follows:

K ′ = h(K).

A household enters each period with an individual stock of fiat money m
and a capital stock k. It can be shown that the representative consumer solves
the following functional equation:

v(k,m, K) = sup
c,k′,m′∈Ψ(k,m,K)

u(c) + βv(k′,m′,K ′)

where Ψ(k,m, S) is the household feasible correspondence and consists of the
set of (c, k, m) satisfying the following restrictions:

p(K)(c + k′) + m′/M ≤ p(K)[f(K) + (k −K)f ′(K)] + [m + l(K)]/M, (5)

p(K)(c + k′) ≤ [m + l(K)]/M, (6)

c,m′, k′ ≥ 0.

Notice that, given our assumptions, Ψ(k,m, K) is well-behaved (it is a con-
tinuous, compact and convex valued non-empty correspondence that admits
measurable selections). In addition, a standard argument shows that there
exists a bounded, continuous, strictly concave, strictly increasing value function
v(k, m, K) satisfying the household’s Bellman’s equation, and that v admits an
envelope condition for both k and m for fixed S.

Letting λ and φ be the multipliers on (5) and (6) respectively. The following
Euler equations are obtained by substituting the envelope conditions into the
original first-order conditions, and also recalling the feasibility conditions:

u′(c) ≤ p(λ + φ) with equality if m > 0, (7)

p(λ + φ) = βu′(c′)f ′(K ′), (8)

λ = β
(λ′ + φ′)
j(K ′)

. (9)

Define λ(S) = λ(k,m, K) and φ(K) = φ(k,m, K) by imposing the equilibrium
conditions k = K and m = M . Define also the following tax:

t1(K) =
φ

λ + φ
.
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Then, assuming that β
j < 1, it can be shown that (7) binds, and we can

rewrite (7)-(9) as:
u′(c) = βu′(c′)(1− t1(K ′))f ′(K ′) (10)

and,

1− t1(K) = β
u′(c′)

u′(c)j(K ′)
. (11)

This economy grows in equilibrium asymptotically under Assumption 1, 1’, and
2, as it does in the models discussed in Jones and Manuelli (1990). We can then
define an operator in Section 3 as in the tax economy, apply the main results
of the paper to solve (10) for a tax equilibrium for a fixed t1, and then use
this equilibrium to determine the class of monetary economies indexed by j(K)
such that that tax economy associated with t1 can be written as a monetary
economy associated with a side condition like (11). In addition, if we place the
distortions t1 in a partially ordered set T with the pointwise Euclidean partial
order on a space of functions, we can derive comparative statics for the set of
fixed points of the nonlinear fixed point operator as in Section 3, and in addition
prove the existence of unique Markov equilibrium.

6 APPENDIX: PROOFS

Proof of Lemma 1. Recall that a lattice E is complete if any subset G of
E is such that G has a sup and an inf. Consider any family G of elements
of E. Clearly (i) 0 ≤ supG ≤ F , (ii) sup G is weakly increasing, and (iii)
F − supG = inf{F − g}g∈G is also weakly increasing. A similar argument
applies for inf G. Thus E is a complete lattice.

By the double monotonicity assumption (ii) and (iii), for all h ∈ E, and for
all s′ ≥ s:

0 ≤ h(s′)− h(s) ≤ F (s′)− F (s).

Therefore, since F is continuous on its domain,

∀ε > 0, ∃δ > 0, | s− s0 |< δ implies | h(s)− h(s0) |≤| F (s)− F (s0) |< ε.

Proof of Lemma 2. The proof that Ac exists, is unique, weakly increasing,
and that F−Ac is weakly increasing follows the construction in Coleman (1991),
as does the monotonicity of A. First, recall that Ac is defined as:

u′[Ac(K, z)] = βEz{u′[c(F (K, z)−Ac(K, z))] ∗H(F (K, z)−Ac(K, z))}.

While the LHS is strictly decreasing in Ac(K, z) (from ∞ to a finite quantity),
the RHS is strictly increasing in Ac(K, z) under Assumption 1(ii) and (iv) and
2 (from a finite quantity to ∞). Thus for each (K, z), Ac(K, z) exists and is
unique.
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Second, considering c1 and c2 such that c1 ≤ c2, we have:

u′[Ac2(K, z)] = βEz{u′[c2(F (K, z)−Ac2(K, z))] ∗H(F (K, z)−Ac2(K, z))}

and,

u′[Ac2(K, z)] ≤ βEz{u′[c1(F (K, z)−Ac2(K, z))]H(F (K, z)−Ac2(K, z))}. (3)

Assume that Ac1 ≥ Ac2. Then, Ac1(K, z) ≥ Ac2(K, z) and F (K, z)−Ac2(K, z) ≥
F (K, z)−Ac1(K, z). Because c1 is increasing:

c1(F (K, z)−Ac1(K, z)) ≤ c1(F (K, z)−Ac2(K, z)).

With both u′ and H decreasing functions, the previous inequality implies that:

u′[Ac1(K, z)] = βEz{u′[c1(F (K, z)−Ac1(K, z))]H(F (K, z)−Ac1(K, z))}

≥ (4)

βEz{u′[c1(F (K, z)−Ac2(K, z))]H(F (K, z)−Ac2(K, z))}.
Combining (2) and (3) leads to:

u′[Ac1(K, z)] ≥ u′[Ac2(K, z)],

which contradicts the hypothesis that Ac1 ≥ Ac2. It must therefore be that
Ac1 ≤ Ac2, that is, A is a monotone operator.

Proof of Proposition 2. For any s in X, the sequence AnF (s) is de-
creasing and bounded, and therefore converges. Denoting c̃(s) the pointwise
limit, necessarily, c̃ = inf{AnF}n∈N . Thus c̃ belongs to E (as E is a complete
lattice), which implies by Lemma 1 that c̃ is continuous. It remains to show
that Ac̃ = c̃.

Pick any K = (x, y) in R+ ∗ R+ and consider s = (K, z). Assume, without
loss of generality, that x ≥ y. The sequence {cn+1}∞n=0 = {Acn}∞n=0 converges
to c̃ pointwise, so that:

for all z in Z, F (s)−Acn(s) converges to F (s)− c̃(s)

and, since H is continuous:

for all z in Z, H(F (s)−Acn(s)) converges to H(F (s)− c̃(s)).

Since c̃ is the pointwise limit, we know that the convergence of sequence {cn}∞n=0

toward c̃ is uniform on the compact space Y = [0, F (x, x, zmax)]∗[0, F (x, x, zmax)]∗
Z. Consequently,

for all z in Z, cn(F (s)−Acn(s)) converges to c̃(F (s)− c̃(s)).

Note that the uniform convergence toward c̃ is essential in establishing this
result. Indeed, for all z:

|cn(F (s)−Acn(s))− c̃(F (s)− c̃(s))|
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≤

|cn(F (s)−Acn(s))− c̃(F (s)−Acn(s))|

+

|c̃(F (s)−Acn(s))− c̃(F (s)− c̃(s))| .

The first absolute value on the right side of the inequality above is bounded
above by sup |cn − c̃| on the compact Y , which can be made arbitrarily small
because of the uniform convergence on the compact Y . The second absolute
value can be made arbitrarily small by equicontinuity of c̃.

Then, by continuity of u′:

for all z in Z, u′[cn(F (s)−Acn(s))] converges to u′[c̃(F (s)− c̃(s))].

Thus,
βEz{u′[cn(F (s)−Acn(s))]H(F (s)−Acn(s))}

converges to:
βEz{u′[c̃(F (s)− c̃(s))]H(F (s)− c̃(s))}.

The former term is exactly u′(Acn(s)), which we know converges to u′(c̃(s)).
By uniqueness of the limit:

u′(c̃(s)) = βu′[c̃(F (s)− c̃(s))]c̃(F (s)− c̃(s)),

which demonstrates that, for all s, Ac̃(s) = c̃(s).

Proof of Theorem 2. Suppose t′ ≥T t. Consider st′ the minimal fixed
point of At′ . Because At is increasing in t:

st′ = At′s
t′ ≥ Ats

t′ .

That is, st′ is an excessive point of At, which implies that st′ ≥ st, where st is
the minimal fixed point of At, since the minimal fixed point is the least excessive
point of by Theorem 1. Similarly, the maximal fixed point of At denoted xt

satisfies:
xt = Atx

t ≤ At′x
t.

That is, xt is a deficient point of At′ . By Theorem 1, necessarily xt ≤ xt′ ,
where xt′ is the maximal fixed point of At′ since the maximal fixed point is the
greatest deficient point.

Proof of Theorem 3. Suppose that Â has two distinct strictly positive
fixed points, which we denote c1 and c2. Assume without loss of generality that
there exists (k̂, ẑ) with k̂ > 0 such that c1(k̂, ẑ) < c2(k̂, ẑ). Choose 0 < k1 ≤ k̂
and 0 < t < 1 such that:

c1(k, z) ≥ tc2(k, z) for all k1 ≤ k ≤ sup(k̂, 2k1), all z, (i)
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with equality for some (k, z). Note that such t exists because the interval
[k1, sup(k̂, 2k1)] is compact.18 Combining the x0-monotonicity of Â and (i)
implies:

c1(k, z) ≥ (Âtc2)(k, z) for all k1 ≤ k ≤ sup(k̂, 2k1), all z.

We therefore have that, for all z and for all k1 ≤ k ≤ sup(k̂, 2k1):

c1(k, z) ≥ Âtc2(k, z) > tÂc2(k, z) = tc2(k, z),

in which the strict inequality, which follows from the hypothesis of pseudo con-
cavity of Â, contradicts (i). Therefore, there is at most one fixed point.

Proof of Lemma 3. Recall that Â is pseudo concave if, for any strictly
positive m and any 0 < t < 1, Âtm(K, z) > tÂm(K, z) for all K > 0 and for
all z ∈ Z. Since Ẑ is strictly decreasing in its second argument, a sufficient
condition for this to be true is that:

Ẑ(tm, tÂm,K, z) > Ẑ(tm, Âtm,K, z) = 0. (ii)

By definition:

Ẑ(tm, tÂm,K, z) =
1

tÂm
− βEz

{
H(F (K, z)−Ψ(tÂm(K, z)), z′)

tm(F (K, z)−Ψ(tÂm(K, z)), z′)

}

so that:

tẐ(tm, tÂm,K, z) =
1

Âm
− βEz

{
H(F (K, z)−Ψ(tÂm(K, z)), z′)

m(F (K, z)−Ψ(tÂm(K, z)), z′)

}
.

Since Ψ is increasing and H(K ′, z′)/m(K ′, z′) is decreasing in K ′:

1

Âm
− βEz

{
H(F (K, z)−Ψ(tÂm(K, z)), z′)]

m(F (K, z)−Ψ(tÂm(K, z)), z′)]

}
>

1

Âm
− βEz

{
H(F (K, z)−Ψ(Âm(K, z)), z′)

m(F (K, z)−Ψ(Âm(K, z)), z′)

}
= 0

and Ẑ(tm, tÂm,K, z) > 0, so that condition (ii) obtains.
The condition that limk→0 f1(k, K, z) = ∞ for all K > 0, all z in Assumption

1(ii) implies that H(0, z′) = ∞ for all z′. Given that Â is monotone, this latter
condition is sufficient for the operator Â to be x0-monotone (Lemma 9 and 10
in Coleman (1991).

18In Coleman, the existence of t such that c1 ≥ tc2 is guaranteed because the strictly
positive consumption functions are compared on the compact set [k1, k] × Z, where k is the
maximum maintainable capital-labor ratio.
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Example 1. We prove existence and uniqueness of the value function under
the assumption that u(c) = (1/θ)cθ with 0 < θ < 1 in the simple case with no
uncertainty so we set (1 − τ)zt = A for all t. We closely follow Alvarez and
Stokey (1997), adapting their proof to allow for an externality in the production
function. The only difficulty is to establish that the function:

v(k0,K0) = sup
{kt+1}∞t=0

∞∑
t=0

βtu(AKα
t K1−α

t + (kt −Kt)αAKα−1
t K1−α

t − kt+1)

s.t. kt+1 ∈ [0, AKα
t K1−α

t + (kt −Kt)αAKα−1
t K1−α

t ],

given (k0,K0) and Kt+1 = h(Kt) is bounded above, which we show is true under
the assumption that β(1 + α)θAθ < 1. Indeed:

u(AKα
t K1−α

t + (kt −Kt)αAKα−1
t K1−α

t − kt+1) ≤ u(AKt + αAkt)
≤ Aθ(1 + α)θ(1/θ)(sup(kt,Kt))θ

and,
sup(kt,Kt) ≤ sup(A(1 + α) sup(kt−1,Kt−1), AKt−1)

since Kt+1 = h(Kt) ≤ AKα
t K1−α

t . Thus,

sup(kt,Kt) ≤ A(1 + α) sup(kt−1,Kt−1).

Consequently, if βAθ(1 + α)θ < 1,

0 ≤ v(k0,K0) ≤ (1/θ)[1/(1− βAθ(1 + α)θ)](sup(k0,K0))θ.

Notice that:

lim
t→∞

βt |v(kt,Kt)| ≤ lim
t→∞

βt |sup(kt,Kt)|θ ‖v‖ ≤ lim
t→∞

βtAθ(1+α)θ |sup(k0,K0)| ‖v‖ = 0,

so v satisfies Bellman’s equation (See Chapter 4 in Stokey et al., 1989). The
rest of the proof follows exactly Alvarez and Stokey (1997).
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