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Abstract
How does risk or uncertainty in the productivity of research affect

the growth rate of the economy? To answer this question, a model
of endogenous technological change is used where sustained growth
stems from intentional investments in R&D from profit-maximizing
firms. The uncertainty arises from the productivity of these invest-
ments in R&D. The main result of this analysis is that the relation-
ship between long-run growth and uncertainty (on the productivity of
knowledge creation) depends on two main factors - the returns to scale
in knowledge creation (increasing or non-increasing) and the value of
the elasticity of intertemporal substitution (higher or lower than some
critical value). Based on empirical studies on the returns to scale in
knowledge creation (”non-increasing”) and the value of the elasticity
of intertemporal substitution (”higher than the critical value”), we ex-
pect a negative relationship between long-run growth and uncertainty
regarding the productivity of knowledge creation.
JEL Numbers: O3
Keywords: Long-run growth, Technological change, Uncertainty

1 Introduction
Investments in research and development (R&D) or, more generally, invest-
ments in the creation of knowledge are the driving force behind the advance-
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sity Rotterdam, P.O.Box 1738, 3000 DR Rotterdam, The Netherlands. Phone: +31-10-408
2158, e-mail: pdehek@few.eur.nl. Financial support from the Netherlands Organisation
for Scientific Research (NWO) and the Netherlands Technology Foundation (STW) is
gratefully acknowledged.
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ment of the technology. More investments will generally lead to a higher
rate of technological change, and, consequently, to higher economic growth.
However, the return to these investments is not known in advance, that is,
the productivity of knowledge creation is uncertain. Hence, there is a link
between uncertainty and (long-run) growth. The objective of this paper is
to find out the nature (positive or negative) of this link and to identify the
main factors that determine this nature.
In the present paper, uncertainty derives from randomness in the pro-

ductivity of R&D. In general, one part of uncertainty is due to individual,
firm-specific (idiosyncratic) uncertainty, while the other part arises from
economy-wide (common) shocks, which have the same impact on all firms.
Here, the analysis will focus on common shocks1, such as technology and
policy shocks. Hence, the question is how uncertainty in the productivity of
knowledge creation, which is common across firms, affects the growth rate of
the economy.
Many researchers have studied the link between investment and uncer-

tainty, mainly theoretically. According to this literature2, the sign of the
effect of uncertainty on (capital) investment is ambiguous; the effect depends
on the degree of competition in product markets, the degree of irreversibility
of investment, the production technology (constant or decreasing returns to
scale), the incompleteness of (financial) markets and the attitude of firms
toward risk. The few empirical studies on the link between investment and
uncertainty (measured by various volatility measures) seem to indicate a
negative effect of volatility on private investment (as opposed to aggregate
investment, that is, private and public investment, where no such correlation
is found).3

The present paper is concerned with the link between growth and uncer-
tainty and, therefore, in the spirit of the new or endogenous growth literature,
with the link between uncertainty and human capital or knowledge instead of
physical capital. Although there are many studies on stochastic endogenous
growth models4, so far there have been few studies that analyze the effect
of uncertainty, i.e., the volatility of the shocks, on (the distribution of) the

1Schankerman (2001) finds that idiosyncratic shocks do not account for much (approx-
imately 25%) of the variation in investment decisions. Nearly 75% of the microvariance is
due to heterogeneity in micro level responses to aggregate (common) shocks.

2E.g. Hartman (1972), Abel(1983), McDonald and Siegel (1986), Pindyck (1988), Ca-
ballero(1991), Dixit and Pindyck (1994).

3E.g. Ramey and Ramey (1995), Guiso and Parigi (1999) and Aizenman and Marion
(1999).

4See e.g. King and Rebelo (1988), King, Plosser and Rebelo (1988), Obstfeld (1994),
Hopenhayn and Muniagurria (1996).
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long-run growth rate. For example, Jones, Manuelli and Stacchetti (1999)
show that the relationship between volatility in technology shocks and mean
growth can be either positive or negative, depending on the curvature of the
utility function. However, they expect a positive relationship between un-
certainty and growth on the basis of a quantitative analysis. De Hek (1999)
analyses the link between volatility in the productivity of knowledge creation
and growth within two different models. Under the assumption of a loga-
rithmic utility function, in the human capital accumulation model of Lucas
(1988) volatility has a negative effect on the expected growth rate; in Romer’s
(1986) model of learning-by-doing and knowledge spillovers the sign of the
growth-uncertainty relationship can be either positive or negative, where the
key parameter is again the curvature of the utility function.5 In a recent pa-
per Blackburn and Pelloni (2001) investigate the relationship between growth
and volatility in learning-by-doing economies. They find that the correlation
between long-term growth and short-term volatility depends on the source
of stochastic fluctuations and the functioning of the labor market. As re-
gards the former, long-run growth is negatively related to the volatility of
(non-neutral) nominal shocks, but positively related to the volatility of real
shocks.
In an influential empirical study Ramey and Ramey (1995) find evidence

of a negative relationship between economic growth and the volatility of eco-
nomic fluctuations. This negative relationship is mainly due to the volatility
of the innovations to growth. This measure corresponds more closely to the
notion of uncertainty. At face value this result seems to contradict those
of Kormendi and Meguire (1985) who find that the standard deviation of
output growth has a significant positive effect on growth. However, Ramey
and Ramey (1995, p.1145) argue that in the regressions of Kormendi and
Meguire, the positive effect of the standard deviation may be capturing the
effect of predictable movements in growth. In that way, both results are
consistent: volatility of the innovations seems to have a negative effect, while
volatility in the predicted variable has a positive effect on growth.
The analysis in this paper differs from the analyses in Jones, Manuelli and

Stacchetti (1999) and De Hek (1999) by choice of endogenous growth model
and source of uncertainty. Here, a model of endogenous technological change
is used. This choice of model is motivated by the fact that in this model
long-run growth in the economy is driven by improvements in the technology
that arise from intentional investments in R&D from profit-maximizing firms.

5See also Roche (1999), who finds a negative relationship between uncertainty and the
expected consumption growth rate in a continuous time framework, and De Hek and Roy
(2001), who analysed conditions for sustained growth in the presence of stochastic shocks.
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Uncertainty derives from the productivity of the investments in R&D. Un-
certainty is modeled by assuming a probability distribution over the relevant
variable. This random variable is independently and identically distributed
over time. Hence producers who invest in R&D face the same uncertainty in
every period and cannot learn from past experiences.6

The main result of this analysis is that the relationship between long-run
growth and uncertainty (on the productivity of knowledge creation) depends
on two main factors - the returns to scale in knowledge creation (increasing or
non-increasing) and the value of the elasticity of intertemporal substitution
(higher or lower than some critical value). Under the assumption of a loga-
rithmic utility function, more uncertainty leads to less time spent on research
and a smaller average rate of technological change if there are non-increasing
returns to scale. If there are increasing returns to scale, there are two equi-
libria and more uncertainty leads to more (less) time spent on research and
a higher (lower) average rate of technological change if the economy is in the
low (high) research level equilibrium. Under the restriction that the econ-
omy is in its unique long-run equilibrium (where the growth rate of output is
governed by a unique invariant probability measure), the same results apply
in the case of a CES utility function if the elasticity of intertemporal substi-
tution (EIS) is higher than some critical value. If the EIS is lower than the
critical value, the results go in the opposite direction. Based on empirical
studies on the returns to scale in knowledge creation (”non-increasing”) and
the value of the EIS (”higher than the critical value”), we expect a negative
relationship between long-run growth and uncertainty regarding the produc-
tivity of knowledge creation.

2 The Model
The model that will be developed in this section is based on the models of
endogenous technological change of Romer (1990) and Aghion and Howitt
(1998, Chapter 3).

6This kind of uncertainty precludes the use of real options theory, which assumes that
the uncertainty will be at least partly revealed over time.
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2.1 Technology

The consumption-capital good in the economy, final output Y , is produced
according to

Yt = L
1−β
t

Z 1

0

Aitx
β
itdi, (1)

where xit is the quantity of intermediate (or capital7) good i, Lt is the quan-
tity of labor employed to produce final output and Ait is an index for the
technology or knowledge in firm (or sector) i. At each date, the representa-
tive final-output firm decides on the quantity of each intermediate good by
maximization of its profits. This implies that the inverse demand function,
relating the price pit of intermediate good i to its supply, is given by

pit = βL1−βt Aitx
β−1
it , ∀i ∈ [0, 1]. (2)

The wage rate wL,t of (skilled) labor used in the final-output sector is equal
to its marginal product,

wL,t = (1− β)L−βt

Z 1

0

Aitx
β
itdi. (3)

Each intermediate good is produced by a firm that has an infinitely-lived
patent on that design (or can in some other way effectively prevent other com-
petitors from entering the market, without affecting the profit maximization).
Due to this monopoly power an intermediate firm can devote resources, i.e.,
labor, to research and development (R&D), which enhances the state of the
technology of that firm. A higher state of the technology might be seen as an
improvement of the quality of the firm’s product and implies higher profits.
The intermediate sector uses labor to conduct research. Labor or human
capital8 in sector i is denoted by hit. Average or total human capital used to
conduct research is then given by Ht =

R 1
0
hjtdj. The total labor force in the

economy is fixed and set to 1, i.e., Lt +Ht = 1 for all t.
Suppose that technology or knowledge evolves according to

Ai,t+1 =
¡
1 + ηt+1h

γ
itH

θ
t

¢
Ait, (4)

7Intermediate goods and capital (goods) are used interchangeably throughout the pa-
per.

8In this paper, the amount of human capital used in sector i, hit, is defined to be the
amount of labor used in sector i, lAit, times the (constant) skill level, say u. Normalizing
u to 1 implies that hit = lAit.
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where γ > 0 is a returns-to-scale parameter, θ > 0 a parameter controlling
the spill-over effect of average (or total) human capital, Ht =

R 1
0
hjtdj, and

η a random variable representing the productivity of human capital in the
accumulation of knowledge. In every period, η may take any value on some
interval I. As a result, the return to research is uncertain. The probabil-
ity distribution of the return is, however, known and fixed. More formally,
assume that the sequence of shocks {ηt} satisfies:

{ηt} is a sequence of independently and identically distributed
(i.i.d.) random variables with probability distribution µ and sup-
port I = [ηlow, ηhigh], ηhigh > ηlow > 0.

Clearly, more (less) uncertainty is associated with higher (lower) variabil-
ity. To determine the effect of changing the variability on the expectation of
a function of the random variable, the following result is very useful.

Lemma 1 Given that Y is more variable than X, Ef(X) > (≥) Ef(Y ) if
f is strictly (weakly) concave, while Eg(X) < (≤) Eg(Y ) if g is strictly
(weakly) convex.

Proof. See Rothschild and Stiglitz (1971) for a derivation of this result.
(For a formal definition of variability see Rothschild and Stiglitz, 1970).

Therefore, to determine the effect of increasing (or decreasing) variability
on Ef(X), it is sufficient to find out whether f(.) is strictly concave or
strictly convex. E.g. if f(X) is strictly concave, increasing the variability of
X leads to a decrease in the expectation of f(X). If f(.) is neither concave,
nor convex, the theory does not predict the effect of increasing variability.
Assume that each intermediate-good producer rents its capital from house-

holds in a perfectly competitive market, where the rental rate at each date
t is ζt. The intertemporal expected profit maximization problem of an
intermediate-good producer is given by:

maxE
∞X
t=0

µ
tQ
s=0

δs

¶
[pitxit − ζtAitxit − wH,thit] (5)

s.t. Ai,t+1 =
¡
1 + ηt+1h

γ
itH

θ
t

¢
Ait,

where E is the expectation operator, δs ≡ 1
1+rs

the discount factor, with rs
representing the interest rate (with r0 = 0). The transversality condition,
which is given in the appendix, is assumed to be satisfied.
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Returns on investment in R&D are uncertain. In each period the impact
of research on each firm’s stock of knowledge is randomly determined. Since
η is assumed to be independent from i, this specification of the uncertainty
implies that the shocks are economy wide, i.e., the same for each firm. There-
fore, the riskiness of the investments in R&D is the result of changes in the
economic climate, e.g., induced by technology or policy shocks.
With respect to the timing of the shocks, it is assumed that the shock

ηt realizes at the beginning of period t. This implies that in period t, ηt is
known but ηt+1 is not known.
In maximizing the expected discounted stream of profits, the firm knows

the demand for its product as given by equation (2). Therefore, replacing pit
in the maximization problem with the right-hand side of equation (2) and
differentiating with respect to the two choice variables xit and hit leads to
the first-order conditions. These two conditions can be written as

ζt = β2
µ
xit
Lt

¶β−1
, (6)

wH,t = E

"
ηt+1γh

γ−1
it Hθ

tAitβ(1− β)L1−βt+1 x
β
i,t+1

1 + rt+1

#
. (7)

Let At denote the average productivity parameter across all firms at date t:
At ≡

R 1
0
Aitdi. Because each sector i uses Aitxit units of capital, the total

capital stock (measured in forgone consumption) is equal toKt ≡
R 1
0
Aitxitdi.

According to equation (6), all firms produce the same amount at any given
time: xit = xt =

Kt

At
for all i. Next, suppose that initially at t = 0 every

firm has the same productivity, that is, Ai0 = A0 for all i, which implies that
Ait = At for all i. Then equation (7) allows us to have hit = ht for all i,
which, in turn, implies that Ht = ht. As a result, the aggregate technology
(1) can now be expressed in the simpler form

Yt = Atx
β
t L

1−β
t . (8)

For reasons of tractability, it is assumed that the intermediate good de-
preciates fully each period. This implies that the rental rate that would just
compensate the owners of capital (the households) for interest and depreci-
ation costs will be ζt = rt + 1. Combined with the fact that, in equilibrium,
the wage rate in the intermediate sector is equal to the wage rate in the
final-output sector, i.e., wH,t = (1 − β)L−βt Atx

β
t , this implies that equation

(7) can be written as

βL−βt x
β
t = E

h
xt+1γηt+1h

γ+θ−1
t

i
. (9)
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2.2 Preferences

On the consumer side, the objective of the representative agent (the num-
ber of agents is normalized to one) is to select consumption and savings to
maximize the expected value of lifetime utility:

maxE

∞X
t=0

µ
1

1 + ρ

¶t
u(Ct) (10)

s.t. bt+1 = (1 + rt)bt + wt + πt − Ct, (11)

where ρ represents the time preference of the consumers, Ct is consumption
and bt represents assets. The agent’s sources of income are return on their
stock of assets (1 + rt)bt, wage income wtLt + wtht = wt and profits πt =
βYt−(1+rt)Kt−wtht. Maximization with respect to consumption and savings
implies that the optimal path of consumption follows the Euler equation,

u0(Ct) = E
·
u0(Ct+1)1 + rt+1

1 + ρ

¸
. (12)

The associated transversality condition is given in the appendix.

2.3 Equilibrium

In equilibrium, the total amount of assets owned by the consumers should
equal the capital stock: bt = Kt ≡ Atxt. By imposing this (capital) market
clearing condition, the budget constraint of the consumers implies that the
market for goods clears: Ct + Kt+1 = Yt. Since the total amount of labor
present in the economy is normalized to 1, equilibrium on the labor market
requires that L+ h = 1.
To be able to solve the consumer maximization problem along the optimal

path, the utility function is restricted to the logarithmic one9:

u(Ct) = ln(Ct). (13)

By equations (6) and (8), the fact that Kt = Atxt and the market clear-
ing condition for goods, 1 + rt+1 can be written as 1 + rt+1 = β2 Yt+1

Kt+1
=

β2Ct+1+Kt+2

Kt+1
. This implies that the Euler equation turns into the following

stochastic expectations difference equation:

Kt+1C
−1
t =

β2

1 + ρ
E
£
1 +Kt+2C

−1
t+1

¤
. (14)

9Notice that this setting with a logarithmic utility function, a Cobb-Douglas production
function and complete depreciation is strongly related to Brock and Mirman (1972).
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Notice that because the shock in period t realizes ”sufficiently early” in pe-
riod t, output Yt and hence investment Kt+1 is known at the moment a
consumption choice is made.
This equation is solved (see appendix) by imposing the associated transver-

sality condition. It follows that investment and consumption are a constant
fraction of income:

Kt+1 =
β2

1 + ρ
Yt, (15)

Ct =

µ
1− β2

1 + ρ

¶
Yt. (16)

2.3.1 The optimal level of research

To solve for the optimal level of research activity, notice that equation (14)
implies that xt+1 =

β2

1+ρ
Yt
At+1

. Inserting this expression into equation (8) yields
the following equilibrium research condition,

βγ(1− ht)hγ+θ−1t E

Ã
ηt+1

1 + ηt+1h
γ+θ
t

!
= 1 + ρ. (17)

Given the parameter values and probability measure of η, the intermediate
producers choose the optimal amount of time spent on research, ht = h ≡
h(β, γ, θ, ρ, µ(η)). For example, an increase in β, capital’s share of output,
raises the left-hand side of the above equation, inducing more time spent on
research in equilibrium, at least in the case of nonincreasing returns to re-
search (γ + θ ≤ 1)10. The reason behind this effect is that a higher capital’s
share shifts the inverse demand function (2) upwards, increasing the prof-
itability of the intermediate producers and, hence, raises the productivity of
research.
The optimal level of research determines the (gross) rate of technological

change according to

gA,t ≡ At+1
At

= 1 + ηt+1h
γ+θ
. (18)

10The effect on the equilibrium research level depends on the returns to research. Section
2.4 discusses this in more detail in the case of increasing variability.
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2.3.2 The equilibrium path of output

Given the rate of technological change, the growth rate of output can be
determined. First, observe that along the optimal path ht = h, and therefore
Lt = L, are constant over time (not depending on the shock). Second, since
investment is a constant fraction of output, the relative change in the level
of the intermediate goods can be written as xt+1

xt
= Yt

Yt−1
At
At+1

. As a result,
using equation (8), the (gross) growth rate of output follows the stochastic
difference equation

Yt+1
Yt

=

µ
Yt
Yt−1

¶β µ
At+1
At

¶1−β
=

µ
Yt
Yt−1

¶β ³
1 + ηt+1h

γ+θ
´1−β

, t = 1, 2, ...

(19)

This Markov process (in growth rates) describes the equilibrium path of
output. Associated with each growth rate is a probability measure, say λt,
and one way to determine the long-run behavior of the stochastic process is
to look for an invariant probability measure and see whether the sequence of
probability measures converges to it. Since this stochastic process is similar
to the stochastic process obtained in De Hek (1999)11, we can immediately
conclude that there exists a unique invariant probability measure to which the
growth rate (weakly) converges. This implies that we may indeed talk about
the long-run behavior of the growth rate. Another result that immediately
follows from the analysis in De Hek (1999) is on the relationship between the
growth rate of output and the rate of technological change, given in the next
proposition.

Proposition 2 (A) The log of the growth rate converges in expectation to
the log of the rate of technological change, that is,

lim
t−→∞

E

½¯̄̄̄
ln
Yt+1
Yt
− ln

h
1 + ηh

γ+θ
i¯̄̄̄¾

= 0, (20)

with the expectation taken with respect to the information available at time
t = 0. (B) The expectation of the growth rate of output is strictly smaller
than the expectation of the rate of technological change, that is,

E
Yt+1
Yt

< E
h
1 + ηh

γ+θ
i
. (21)

Proof. See the proof of Proposition 3 in De Hek (1999).

11See equation (8) and Proposition 1 in De Hek (1999).
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2.4 The effect of uncertainty

This section studies the effect of uncertainty on the equilibrium research
effort, h, the average rate of technological change, EgA, and the average
(asymptotic) growth rate of output, EgY .

2.4.1 The effect of uncertainty on h and EgA

The effect of a higher volatility of the shock η on the optimal choice of h
depends on the functional form of the equilibrium research condition (17)
regarding the shock η and the variable h. Ignoring - for this moment - the
time subscripts, the equilibrium research condition can be rewritten as

E

µ
βγ(1− h)hγ+θ−1η

1 + ηhγ+θ

¶
= 1 + ρ. (22)

The first step in finding the effect of more uncertainty on research activity
is to determine the effect of a higher volatility of η on the left-hand-side of
this equation, which will be denoted by E(Φ). Since Φ is a concave function
of η, a higher volatility of η has a negative effect on the expectation of Φ.
Second, the effect of a smaller E(Φ) on the equilibrium value of h depends

on the functional form of E(Φ) as a function of h. If γ + θ ≤ 1, it is easy to
see that E(Φ) is a decreasing function of h, as depicted in figure 1. A higher
volatility, which decreases E(Φ) as a function of h, then leads to a smaller
level of research. On the other hand, if γ + θ > 1, E(Φ) as a function of h is
hump-shaped. This implies that there are two equilibrium values of h, a ”low
research level equilibrium” and a ”high research level equilibrium” (that is,
if the maximum of E(Φ) is higher than 1). An example of this situation is
given in figure 2. There will actually be more time spent on research due to
more uncertainty if the economy is in the low level equilibrium, as opposed
to less research time in the high level equilibrium.
What is the effect of a change in the time spent on research on the rate

of technological change? A reduction in the time spent on research, for
example, implies that the expectation of gA decreases, that is, the rate of
technological change will be smaller on average. More formally, consider
the two probability measures µ and µ+, where µ+ is more uncertain than
µ, that is, it has the same mean but a higher volatility. Then the average
rate of technological change under µ+ is smaller than the average rate of
technological change under µ for almost any sequence of realizations of η;
i.e., it occurs almost surely. The effect of uncertainty on the time spent on
research and the average rate of technological change is summarized in the
next proposition.

11



Proposition 3 (A) If γ + θ ≤ 1, then more uncertainty leads to (i) less
time spent on research and (ii) a smaller rate of technological change on
average. (B) If γ+θ > 1, then more uncertainty leads to (i) more (respectively
less) time spent on research and (ii) a higher (respectively smaller) rate of
technological change on average if the economy is in the low (respectively
high) research level equilibrium.

Proof. See Appendix.

2.4.2 The effect of uncertainty on EgY

To determine the effect of uncertainty on the path of final output, suppose
that the volatility of the shocks increases from period t + 1 on (that is, the
shocks ηt+1, ηt+2, ... are more variable than the shocks ηt, ηt−1, ...). Consider
the following equation (which is an immediate consequence of equation 18):

gY,t+T = (gY,t)
βT
³
1 + ηt+1h

γ+θ
´(1−β)βT−1

...
³
1 + ηt+Th

γ+θ
´1−β

, (23)

with gY,t = Yt/Yt−1. Taking first expectations and then logs on both sides
gives

lnEgY,t+T = E
h
(gY,t)

βT
i
+
T−1X
i=0

lnE

·³
1 + ηt+T−ih

γ+θ
´(1−β)βi¸

. (24)

Notice that, e.g. in the case of γ + θ ≤ 1, more variability in the shocks lead
to a fall in ht, the fraction of total labor used in research activities, which
implies a rise in Lt, the fraction of labor used in production. The quantities
of the intermediate goods in period t do not change, because xt =

β2

1+ρ
Yt−1
At

does not depend on the distribution of the future shocks. Therefore, more
uncertainty leads to a higher growth rate of output in period t. However, if
T goes to infinity12,

lnEgY =
∞X
i=0

lnE

·³
1 + ηh

γ+θ
´(1−β)βi¸

, (25)

where gY is the asymptotic growth rate of output. Because all expectations
on the right-hand side of equation (23) are obtained from strictly concave
functions of η, the higher variability of the shocks leads to a fall in the
expected asymptotic growth rate of output.

12Since there is a unique invariant probability measure to which the growth rate of out-
put is converging and the gY,t are uniformly bounded and therefore uniformly integrable,
EgY,t −→ EgY (see Theorem 25.12 in Billingsley, 1986).
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3 Precautionary saving
From earlier studies (e.g. De Hek, 1999 and Jones et al., 1999) we know that
the positive effect of precautionary saving on growth may offset the negative
effect if the elasticity of intertemporal substitution is low enough. Therefore,
in order to incorporate this effect, we need to generalize the logarithmic
utility function to the CES utility function,

U(Ct) =
C1−σt − 1
1− σ

, (26)

where 1/σ is the elasticity of intertemporal substitution (and σ the parame-
ter measuring risk aversion). In the previous case with the logarithmic utility
function, it was possible to solve for the optimal path, which gave rise to a
Markov process in growth rates describing the equilibrium path of output.
From that, we could conclude that there exists a unique invariant probability
measure to which the growth rate converges. That is, the equilibrium path
of output converges to the long-run equilibrium in which the growth rate
of output is governed by a fixed probability measure. Hence, the long-run
or asymptotic equilibrium may also be characterised by the term ”balanced
expected growth path” (BEGP). On the BEGP, the expected growth rate is
constant. In the current situation of a CES utility function, we cannot in
general solve for the optimal or equilibrium path, which implies that both
existence and stability of a unique invariant probability measure cannot be
established. However, suppose that the economy has a unique long-run equi-
librium. Then, if the economy is in its long-run equilibrium, we can solve for
the balanced expected growth path. That is,we can solve the stochastic ex-
pectations difference equation that follows from the Euler equation with the
CES utility function. This is the approach that we will take in this section.
Let the economy be in its long-run equilibrium. Then the growth rate of

output is governed by a unique invariant probability measure. In particular,
EgY,t ≡ EgY for all t. Making use of this fact that the expectation of
the growth rate is independent from time, the solution to the stochastic
expectations difference equation is again that investment and consumption
are a constant fraction of income (see appendix). However, this fraction now
involves an expectation term:

Kt+1 =
β2

1 + ρ
E[g1−σY ]Yt, (27)

Ct =

µ
1− β2

1 + ρ
E[g1−σY ]

¶
Yt. (28)
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This expectation term E[g1−σY ] contains the precautionary saving effect. To
see this, consider an increase in the variability of gY . By Lemma 1, this
decreases E[g1−σY ] if σ < 1 and increases E[g1−σY ] if σ > 1. In other words, if
σ < 1, a more variable growth rate of output leads to more consumption and
less savings, while if σ > 1, it leads to less consumption and more savings.
Therefore, in the case of σ > 1, the presence of uncertainty implies extra,
precautionary, savings, and more uncertainty leads to more savings.
Progressing in the same way as in section 2.3 yields the new equilibrium

research condition,

βγ(1− ht)h−1t E[g1−σY ]E

Ã
ηt+1h

γ+θ
t

1 + ηt+1h
γ+θ
t

!
= 1 + ρ. (29)

The difference with the former equilibrium research condition in the log-
arithmic utility case is the presence of the expectation term E[g1−σY ]. To
determine this expectation term, notice that, since investment is again a
constant fraction of output, equation (19) describes the optimal path of out-
put.13 Therefore, equation (23) applies also in this case. By raising both
sides of equation (23) to the power 1− σ, it is easy to show that

lnE[g1−σY ] =
∞X
i=0

lnE

·³
1 + ηh

γ+θ
´(1−σ)(1−β)βi¸

. (30)

3.1 The effect of uncertainty

As in section 2.4, the new equilibrium research condition (29) can be written
as

E[g1−σY ]E

µ
βγ(1− h)hγ+θ−1η

1 + ηhγ+θ

¶
= 1 + ρ. (31)

Let us denote the left-hand side of this equation by Ψ. Hence, Ψ is the
product of two expectations. The effect of higher variability on the first
expectation, E[g1−σY ], can be inferred from equation (30) using Lemma 1.
In the case of σ < 1, a higher variability lowers the expectation, while in
the case of σ > 1 the effect of increasing variability on E[g1−σY ] is positive.
The second expectation is actually identical to the expectation in the ”old”
equilibrium research condition (22) which was denoted by E(Φ). Hence, the
effect of higher variability on the second expectation is negative, irrespective

13The difference with the model in section 2 is that in the present model equation (19)
only holds in the long-run equilibrium.
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of the value of σ. Taking these two effects of increasing variability on the
two expectations together implies that Ψ decreases if σ < 1. However, if
σ > 1, the effect of uncertainty on Ψ and, hence, on the level of research
and on the growth rate is ambiguous. To assess the relative strenghts of the
two opposite effects in this case, we will approximate both expectations by
use of a second-order Taylor series expansion. It turns out that there exists
a critical value of σ, which will be denoted by bσ, such that: If σ lies below
this critical value, the total effect on Ψ is negative, while if σ is higher thanbσ, the total effect is positive.
3.1.1 Estimation of bσ
First, notice that E[g1−σY ] can be approximated by its second-order Taylor
series expansion around E[gY ] ≡ gY , i.e.,

E[g1−σY ] ≈ gY 1−σ − 1
2
(1− σ)σgY

−σ−1var(gY ) ≡ Q, (32)

where var(gY ) is the variance of gY . To determine the variance of gY , ob-
serve that equation (21) implies (taking first logs and then expectations)
that E[ln gY ] = E[lnX], where X ≡ 1 + ηh

γ+θ
. Approximating both expec-

tations with a second-order Taylor series expansion around gY , respectively
X ≡ E[X], implies that

var(gY ) ≈ 2gY 2 ln
µ
gY

X

¶
+

µ
gY

X

¶2
var(X), (33)

with var(X) = h2(γ+θ)σ2η.
Similarly,

E

Ã
ηt+1h

γ+θ
t

1 + ηt+1h
γ+θ
t

!
≈ ηh

γ+θ

1 + ηh
γ+θ
− h

2(γ+θ)
σ2η³

1 + ηh
γ+θ
´3 ≡W. (34)

To avoid complications, in the remainder of this section we assume that the
variance of the shock is ”small enough” such that both Q andW are positive:

Assumption A. Let σ2η be restricted such that Q > 0 and W >
0.

To approximate the effect of an increase in the variance of the shock η
on the equilibrium research condition, we will determine its effect on Q.W .
The result is given in the next proposition.
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Proposition 4 Let Q and W be given by equations (29) and (31), with
h > 0. Furthermore, let Assumption A hold. Then ∂(Q.W )/∂σ2η = 0 if and
only if

1
1
2
(bσ − 1)bσ = ηh

γ+θ − 2 h
2(γ+θ)

σ2η

(1 + ηh
γ+θ
)2
− ln

Ã
gY

1 + ηh
γ+θ

!
(35)

If the right-hand side of this equation is positive, then there exists bσ such that
∂(Q.W )/∂σ2η < 0 if σ < bσ, and ∂(Q.W )/∂σ2η > 0 if σ > bσ.
Proof. See appendix

To get some idea about the critical level of (the reciprocal of) the elasticity
of intertemporal substitution, bσ, we have to obtain values for the parameters
together with the equilibrium value h in above equation. First, we assume
a value of 1/3 for the capital coefficient, β, motivated by the usual data on
capital’s share of income. Next, consistent with the estimations in a num-
ber of empirical studies (Dinopoulos and Thompson, 1996, 2000, Thompson,
1996), we let γ + θ vary between 0.2 and 1. Furthermore, let σ2η take a value
of ca. 0.01. In comparison, in the Summers and Heston data (PWT 5.6), the
average (across countries) variance of the per capita growth rate is ca. 0.0036.
Jones (2002) provides a rough empirical measure of h, the number of scien-
tists and engineers engaged in research and development as a part of overall
employment, based on data from the G-5 countries (France, West Germany,
Japan, the United Kingdom and the United States). In 1975, for example,
the fraction h was about 1/2 of one percent. By 1993, this fraction had risen
to about 3/4 of a percent. Here, we take h = 0.01. The average value of the
shock, η, varies according to the value of γ+ θ to ensure a plausible long-run
rate of technological change.
To simplify equation (32), we will argue that the last two terms on the

right-hand side (RHS) can be ignored. Notice that, by Proposition 2(B), the
last term - with the minus sign - contributes positively to the RHS. However,
a numerical analysis shows that, with the given parameter values, the value
of this term is in the order of magnitude of a few hundredth of a percent
or even less.14 Hence, in the remainder of this paper, the long-run rate of
growth, gY , is being treated as equal to the long-run rate of technological

14A value of gY is obtained by iteration (50, 000 times) of gY,t+1 =

(gY,t)
β
³
1 + ηt+1h

γ+θ
´1−β

, where the shocks {ηt} are drawn from a given probability

distribution, and taking the average of the growth rates {gY,t} after removing the first
1000 values (to ensure convergence). Concerning the probability distribution, we used
both uniform distributions and normal distributions with similar results.
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change, 1 + ηh
γ+θ
. Furthermore, inserting the range of values mentioned in

the previous paragraph into the second term of the RHS of equation (32)
shows that this term is not larger than a few tenth of a percent. Therefore,
as long as the long-run rate of technological change is not too small (in the
sense that it is significantly higher than the sum of both terms), we may
safely ignore both terms. This implies that bσ can be approximated by

(bσ − 1)bσ = 2

ηh
γ+θ
. (36)

Consequently, if the average rate of technological change is 2.5%, the critical
value of σ is as high as 10.

3.1.2 The effect of uncertainty on h and EgY

The implication of a smaller or higher Ψ for the optimal amount of research,
h, depends on the functional form of Ψ as a function of h. As in the previous
section, this depends on the nature of the returns to scale in knowledge
creation. First, consider the case of decreasing returns to scale. Then, for
σ > 1 it is easy to show that Ψ is decreasing in h. For σ < 1 the situation
is more complex. However, numerical simulations indicate that also in this
case Ψ is decreasing in h.15 Second, if there are increasing returns to scale in
knowledge creation, numerical simulations show that there are two equilibria
(as in figure 2), provided that the return to research is large enough.
The analysis above implies that, if there are no increasing returns to scale

in knowledge creation, i.e. γ+θ ≤ 1, more uncertainty regarding the produc-
tivity of research leads to a smaller average long-run growth rate if σ < bσ,
and to a larger average long-run growth rate if σ > bσ. If there are increasing
returns to scale in knowledge creation, there may exist two equilibria. The
effect of uncertainty, then, depends on in which equilibrium the economy is
located. If the economy is in the high research level equilibrium, uncertainty
affects the long-run growth rate in the same way as above. However, if the
economy is in the low research level equilibrium, the effect of uncertainty
is exactly the opposite: More uncertainty regarding the productivity of re-
search leads to a larger average long-run growth rate if σ < bσ, and to a
smaller average long-run growth rate if σ > bσ.
15Notice that, based on the above considerations regarding gY , it follows that gY is

practically equal to 1 + ηh
γ+θ

, which implies, by equations (29) and (30), that Q is

practically equal to X
1−σ − 1

2(1− σ)σX
−σ−1

h
2(γ+θ)

σ2η. Then, without uncertainty, it is
immediately clear that Ψ is decreasing in h. Therefore, Ψ is decreasing in h as long as
σ2η is ’small enough’. Numerical simulations indicate that Ψ is decreasing in h as long as
Assumption A holds.
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3.2 Discussion

If there are no increasing returns to scale in knowledge creation, and the
elasticity of intertemporal substitution is not too small, that is σ < bσ, more
uncertainty regarding the productivity of research leads to a smaller average
long-run growth rate. Hence, more uncertainty implies a lower average long-
run growth rate if these two restrictions are satisfied.
The first restriction is that there are no increasing returns to R&D; i.e.,

γ + θ ≤ 1. The presence of constant or decreasing returns seems a fairly re-
alistic assumption, which is confirmed by recent empirical evidence. For ex-
ample, Dinopoulos and Thompson (1996, 2000) estimate versions of Romer’s
model of endogenous technological change and find positive, but decreasing,
returns to R&D. Similar results are found in Hall, Griliches and Hausman
(1986), Kortum (1993) and Thompson (1996).
The second restriction is on the elasticity of intertemporal substitution

(EIS). The approximation of the critical value bσ in equation (33) shows that
an average rate of technological change of 2.5% implies a critical value of 10.
Even if the average rate of technological change is as high as 10%, this critical
value is equal to 5. Since the EIS is equal to 1/σ, this would restrict the EIS to
be larger than 0.1−0.2. Concerning the existing literature on this subject, on
the one hand, empirical studies using aggregate consumption data typically
find that the EIS is close to zero (Hall, 1988). On the other hand, calibrated
macroeconomic models designed to match growth and business cycle facts
typically require that the EIS be close to one (Weil, 1989, Lucas, 1990, among
others). In a recent paper, Vissing-Jørgensen (2002) argues that accounting
for limited asset market participation is important for estimating the EIS.
She finds estimates of the EIS of around 0.3−0.4 for stockholders and around
0.8 − 1 for bondholders (the estimates are larger for households with larger
asset holdings within these two groups). Similarly, Guvenen (2002) studies
a dynamic macroeconomic model which incorporates limited asset market
participation together with an EIS that increases with wealth to reconcile
the conflicting evidence. He finds that the properties of aggregate variables
directly linked to wealth, such as investment and output (growth), are almost
entirely determined by the (high-elasticity) assetholders. (At the same time,
since consumption is much more evenly distributed across households than
is wealth, estimation using aggregate consumption uncovers the low EIS of
the majority of households, i.e., the non-assetholders.) Hence, these studies
indicate that the EIS, at least the EIS that is relevant for the issue of output
growth in the present paper, is larger than 0.2.
Hence, given the available evidence, it seems that both restrictions are

satisfied, implying that more uncertainty depresses the long-run growth rate.
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The above analysis implies that increasing σ increases the positive effect
of uncertainty on growth. Beyond some critical level of σ the positive effect
even dominates the negative effect of uncertainty on growth. The intuition
for this effect is the following. Due to risk aversion, more uncertainty reduces
(the certainty equivalent of) the return on savings. Whether this leads to
more or less savings depends on the relative strenghts of the income and sub-
stitution effects. The parameter σ controls the EIS. The higher σ, the lower
is the elasticity and the less willing agents are to intertemporally substitute
consumption (or, the more anxious agents are to smooth their consumption
over time). As a result, the income effect (or precautionary saving effect)
becomes stronger while the substitution effect becomes weaker with higher
σ. Beyond the critical level of σ, the income effect dominates the substitu-
tion effect: the lower return on savings implies more savings. This rise in
savings leads to an increase in investment and a lower (average) interest rate.
The latter implies an increase in the return to research and, therefore, in the
case of nonincreasing returns to research, both an increase in the amount of
human capital used in research activities and a higher average growth rate.

4 Conclusion
The main question in this paper is how risk or uncertainty in the return to
investment in R&D affects the growth rate of the economy. The analysis
in this paper establishes a negative link between uncertainty on the return
to investment in R&D and the long-run growth rate under two restrictions.
The first restriction puts a lowerbound on the EIS. However, for realistic
values of the rate of technological change, which provides the lowerbound
on the EIS, recent studies on the estimation of the EIS indicate that this
restriction is likely to be satisfied. Another variable which is restricted in
order to get a negative link between growth and uncertainty is the return to
R&D, which is assumed to be nonincreasing. A number of empirical studies
have provided evidence that there are in fact decreasing returns to scale, so
that this restriction also seems to be satisfied.
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5 Appendix

5.1 Transversality conditions

The expected one-period profit of an intermediate-good producer on the
BEGP, using equations (2) and (6), can be written as

πi = βY − (1 + r)K − wh = (1− β)(β − h

1− h)Y, (37)

since, by equation (6), (1 + r)K = β2Y and, by equation (3), wh = (1 −
β)Y h

L
= (1− β)Y h

1−h .
Given the initial value Y0, output Yt can be written as

Yt =

µ
tQ
s=1

gY,s

¶
Y0.

Let z = (1−β)(β− h
1−h). Then the optimization problem (5) can be written

as

maxE
∞P
t=0

µ
tQ
s=0

δs

¶
z

tQ
s=1

gY,sY0 =

= maxE
∞P
t=0

(δ0Y0)(δ1gY,1)...(δtgY,t)z =

= max
∞P
t=0

(E [δgY ])
t z.

The transversality condition ensures that the above summation exists and is,
therefore, given by

E [δgY ] < 1. (38)

The well-known transversality condition of the consumer’s optimization
problem is given by

lim
t→∞

E

µ
1

1 + ρ

¶t
c−σt bt+1 = 0. (39)

5.2 Restriction for ”π > 0”

Equation (34) implies that π > 0 iff β > h
1−h . Hence, expected profit π is

positive if and only if h < β
1+β
. If β = 1/3, this implies that h < 1/4.
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5.3 Proof of proposition 3

This proof consists of proving the two steps taken in the text prior to the
proposition. First, we have to prove thatG(η) ≡ η

1+ηhγ+θ
is a concave function

of η. Let us write G(η) = η
1+bη

, with b = hγ+θ. Differentiating G(.) with
respect to η shows that ∂G

∂η
= 1

(1+bη)2
. Differentiating again with respect to η

yields

∂2G(η)

∂η2
=

−2b
(1 + bη)3

< 0.

Hence, G(η) is (strictly) concave for all η ∈ [η, η]. Hence, by Lemma 1, a
higher volatility of η decreases E(Φ).
Second, it remains to be proved that E(Φ) is decreasing if γ + θ ≤ 1 and

hump-shaped if γ+θ > 1. To prove this, we define the function F as follows:
F (h) = mη(1−h)hγ+θ−1

1+ηhγ+θ
, with m = βγ/(1 + ρ). Differentiating this function

with respect to h yields

∂F

∂h
=
mηhγ+θ−2

£
(γ + θ)(1− h)− ¡1 + ηhγ+θ

¢¤
(1 + ηhγ+θ)2

.

If γ + θ ≤ 1, it is evident that F (h) is decreasing in h. In the case of
γ + θ > 1, it is clear that for small h (h close enough to zero such that
(γ+ θ)(1−h) > 1+ ηhγ+θ), ∂F

∂h
> 0. For large h (h close enough to one such

that (γ + θ)(1− h) < 1 + ηhγ+θ), ∂F
∂h
< 0. Since (γ + θ)(1− h) is decreasing

in h (from γ + θ to 0) and 1 + ηhγ+θ is increasing in h (from 1 to 1 + η),
there is a unique h for which (γ + θ)(1− h) = 1 + ηhγ+θ. Therefore, we can
conclude that F (h) is hump-shaped.
The first step implies that a higher volatility of η decreases E(Φ). The

second step implies that depending on whether γ+ θ ≤ 1 or γ+ θ > 1, E(Φ)
is decreasing in h for all h ∈ [0, 1] or hump-shaped. For example, in the first
case, h has to fall in order to keep E(Φ) equal to 1.

5.4 Proof of Proposition 4

Since Q > 0 and W > 0, ∂(Q.W )/∂σ2η = 0 if and only if

∂Q/∂σ2η
Q

=
−∂W/∂σ2η

W
. (40)

From equations (29) and (30) we can derive that

∂Q/∂σ2η =
−1
2
(1− σ)σgY

1−σh
2(γ+θ)

(1 + ηh
γ+θ
)2

.
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Then we can write

Q

∂Q/∂σ2η
=

(1 + ηh
γ+θ
)2

1
2
(σ − 1)σh2(γ+θ)

+
(1 + ηh

γ+θ
)2var(gY )

gY
2h
2(γ+θ)

=
(1 + ηh

γ+θ
)2

1
2
(σ − 1)σh2(γ+θ)

+ σ2η +
2(1 + ηh

γ+θ
)2 ln

¡
gY
X

¢
h
2(γ+θ)

.

According to equation (37), this should be equal to

W

−∂W/∂σ2η
=

ηh
γ+θ
(1 + ηh

γ+θ
)2

h
2(γ+θ)

− σ2η.

Hence, ∂(Q.W )/∂σ2η = 0 if and only if

1
1
2
(σ − 1)σ = ηh

γ+θ − 2 h
2(γ+θ)

σ2η

(1 + ηh
γ+θ
)2
− 2 ln

Ã
gY

1 + ηh
γ+θ

!
.

5.5 Solution of the stochastic expectations difference
equation

5.5.1 Logarithmic utility

The stochastic expectations difference equation is given by

Kt+1C
−1
t = aE

£
1 +Kt+2C

−1
t+1

¤
,

with a = β2

1+ρ
. Forward substitution implies that

Kt+1C
−1
t =

¡
a+ a2 + a3 + ...

¢
+ lim
n−→∞

anE[Kt+n+1C
−1
t+n].

The transversality condition, as given by equation (36) in the appendix (with
σ = 1), implies that

lim
n−→∞

anE[Kt+n+1C
−1
t+n] < lim

n−→∞

µ
1

1 + ρ

¶n
E[Kt+n+1C

−1
t+n] = 0.

Hence,

Kt+1C
−1
t =

a

1− a.

Together with the budget constraint Kt+1+Ct = Yt, this implies that Kt+1 =
aYt and Ct = (1− a)Yt.
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5.5.2 CES utility

In the case of the CES utility function, the stochastic expectations difference
equation is given by

Kt+1C
−σ
t = aEt

£
C1−σt+1 +Kt+2C

−σ
t+1

¤
,

which can be written as

Kt+1C
−σ
t = aEt[C

1−σ
t+1 ] + a

2Et[Et+1[C
1−σ
t+2 ]] + ...+ lim

n−→∞
anE[Kt+n+1C

−σ
t+n].

(41)

To solve this equation, we assume that the economy is in its long-run (asymp-
totic) equilibrium, such that in every period the growth rate of output is
drawn from the same probability measure. This allows us to write E[g1−σY ]
instead ofE[g1−σY,t+1] in the third line below. LetKt+1 = λYt and Ct = (1−λ)Yt,
where λ is still to be determined. Then

a2Et[Et+1[C
1−σ
t+2 ]] = a2Et[Et+1[(1− λ)1−σY 1−σt+2 ]]

= a2(1− λ)1−σEt[Et+1[g1−σY,t+1Y
1−σ
t+1 ]]

= a2(1− λ)1−σE[g1−σY ]Et[Y
1−σ
t+1 ]].

Consequently, equation (41) transforms to

Kt+1C
−σ
t = a(1− λ)1−σE[Y 1−σt+1 ]

·
1

1− aE[g1−σY ]

¸
,

by imposing the transversality condition and under the condition that aE[g1−σY ] <
1. Inserting Kt+1 = λYt and Ct = (1 − λ)Yt into the above equation yields
the solution for λ:

λ = aE[g1−σY ].

5.6 Taylor series approximation

5.6.1 Determination of E[g1−σY ]

Using the second-order Taylor series expansion around E[g1−σY ] implies

E[ln(gY )] ≈ ln gY − 1
2

V ar(gY )

gY
2 ,
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where gY and V ar(gY ) represent respectively the mean and variance of gY .
Let X = 1+ ηh

γ+θ
. From equation (21) it follows (taking first logs and then

expectations) that

E[ln(gY )] ≈ E[lnX]

≈ lnX − 1
2

var(X)

X
2 ,

where the second equality uses the second-order Taylor series expansion
around X, the mean of X. As a result,

var(gY ) ≈ 2gY 2 ln
µ
gY

X

¶
+

µ
gY

X

¶2
var(X),

with var(X) = h2(γ+θ)σ2η.

5.6.2 Determination of E
³

ηhγ+θ

1+ηhγ+θ

´
First, we rewrite the expectation as

E

µ
ηhγ+θ

1 + ηhγ+θ

¶
= E

µ
1 + ηhγ+θ − 1
1 + ηhγ+θ

¶
= 1− E

µ
1

1 + ηhγ+θ

¶
.

The second-order Taylor series expansion around η yields

E

µ
1

1 + ηhγ+θ

¶
=

1

1 + ηhγ+θ
+

h2(γ+θ)

(1 + ηhγ+θ)3
σ2η.

This implies that

E

µ
ηhγ+θ

1 + ηhγ+θ

¶
= 1− 1

1 + ηhγ+θ
− h2(γ+θ)

(1 + ηhγ+θ)3
σ2η.
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Figure 1: Equilibrium research condition, with γ+θ ≤ 1. The figure is based
on equation (22) where the expectation is approximated with a second-order
Taylor series expansion (see appendix). The parameter values used: β = 1/3,
γ = 0.5, θ = 0.05, ρ = 0.05, η = 0.85, σ2η = 0.01.
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Figure 2: Equilibrium research condition, with γ+θ > 1. The figure is based
on equation (22) where the expectation is approximated with a second-order
Taylor series expansion (see appendix). The parameter values used: β = 1/3,
γ = 1.1, θ = 0.05, ρ = 0.05, η = 6, σ2η = 0.01.
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