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1 Introduction

What is the theoretical basis for growth regressions? The answer would
seem obvious: most textbooks start from the Solow model and show that the
canonical growth regression can be derived from it by log-linearization around
the steady state. That answer is unsatisfactory, for at least two reasons.
First, in the Solow model capital accumulation is driven by an exogenous
savings rate and hence has no choice-theoretic basis. Secondly, investment is
unaffected by risk since the model is deterministic. Uncertainty enters only
at the final stage of the derivation, when a stochastic error term is added -
almost as an afterthought - to the estimating equation.

Both objections can, of course, be overcome. A Cass-Koopmans-Ramsey
model in which intertemporal optimizaton determines the savings rate en-
dogenously provides micro foundations for growth theory. Amending this
model by introducing risk defines a class of stochastic Ramsey models, mod-
els with forward looking behavior in which investment decisions are taken
under uncertainty.

In this paper we consider the relation between such models and the canon-
ical growth regression. It is known that there exists at least one model in
the class of stochastic Ramsey models which is consistent with the canonical
(Barro-type) growth regression. However, we show that the canonical growth
regression is consistent with more than one stochastic Ramsey model: the

∗We are very grateful to Rob Alessie, Henri de Groot and Steve Younger for very helpful
comments on an earlier version.
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Ramsey representation is not identified. This impossibility result has disturb-
ing implications. For example, the canonical growth regression is consistent
with a model in which risk affects investment decisions only ex post, when
the agent experiences a shock. In that model exposure to risk does not affect
the agent’s behavior ex ante: behavior is completely independent of the dis-
tribution of shocks. In particular, an increase in risk has no effect on today’s
savings rate. But the same regression is also consistent with models in which
a change in risk does affect behavior ex ante. Clearly, if the model is not
identified then major questions in growth theory cannot be unanswered.

We also show, however, that the model is identified if, in addition to
income data, observations on consumption can be used. Hence structural
form estimation of stochastic Ramsey models is in principle possible. This
re-establishes a link between growth regressions and economic theory.

In the next section we present the model and state and prove a theorem
on the impossibility of identification if only income observations are used.
We also state and prove that identifiability is achieved if both income and
consumption data are available. Section 3 concludes.

2 Identification of Stochastic Ramsey Models

Consider the following intertemporal optimization problem:

V (k0, z0) = max
{ct,kt+1}

E

∞∑
t=0

βtu(ct ) (1)

subject to kt+1 = ztf(kt) + (1− δ)xtkt − ct (t = 0, 1, 2, ...)

given k0, z0, x0

where c denotes consumption, k the capital stock, u the instantaneous utility
function, β a discount factor (0 < β < 1), z an income shock, x an asset
shock, f(k) the production function and δ the rate of depreciation (0 <
δ � 1). Time periods are identified by the subscript t. Shocks are serially
independent and are continuously and identically distributed. The agent
maximizes expected discounted utility taking the probability distribution
F (z, x) of the shocks z, x as given.

At the time the agent decides on ct and kt+1 the realizations zt, xt are

2



known.1 We assume that u(c) is increasing, strictly concave and continuously
differentiable, and that it satisfies the Uzawa conditions. Finally, f(k) is
increasing, continuously differentiable and strictly concave.2 Since z and f(k)
appear only multiplicatively, we can scale f(k) in such a way that Ezt = 1.
Similarly, we can choose 1− δ so as to ensure that Ext = 1.

If this problem has a solution the model can be written in recursive form
as the Bellman equation:

V (k, z, x) = max
k̃

u(zf(k) + (1− δ)xk − k̃) + βEV (k̃, z̃, x̃) (2)

with the associated policy function

ϕ̃(z, x, k) = argmax
k̃

u(zf(k) + (1− δ)xk − k̃) + βEV (k̃, z̃, x̃)

where k and k̃ denote the capital stock at the beginning and the end
of each period. In this form the model applies to every period so that the
time subscripts can be suppressed. The policy function ϕ̃ maps the current
(z, x, k) into k̃, next period’s k. A value function V which satisfies the Bell-
man equation (2) for all (k, z, x) is a solution to the original maximization
problem (1); see e.g. Stokey and Lucas (1989, Theorem 9.2). Define wealth,
w as

wt = ztf(kt) + (1− δ)xtkt (3)

Note that ϕ̃(z, k, x) can be written as ϕ(w). Both this function ϕ(w) and
h(w) = w−ϕ(w) are increasing.3 Note that kt = ϕ(wt−1) and that wt satisfies
the following stochastic difference equation:

wt+1 = zt+1f(ϕ(wt)) + (1− δ)xt+1ϕ(wt). (4)

To avoid technicalities we will add the requirement that this Markov chain
is irreducible for all initial points w0.and has invariant distribution π which
does not have a mass point in 0.4

1Obviously, this is somewhat restrictive: in a more general model kt+1 would have to
be chosen before the shocks were fully known.

2Our conditions ensure non-negativity of ct and kt+1.
3Exercise 10.1 in Stokey and Lucas (1989) applies with minor modifications (notably

to allow for the distinction between asset and income shocks).
4The irreducibility and invariance assumptions are necessary conditions for Theorem

4.1 in Tierney (1996) which we use below.
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We call the class of models satisfying these conditions stochastic Ramsey
models.

V and ϕ satisfy the first order condition5

u′(zf(k) + (1− δ)xk − ϕ(·)) = βEVk(ϕ(·), z̃, x̃) (5)

and the envelope condition

Vk(k, z, x) = u′(zf(k) + (1− δ)xk − ϕ(·))(zf ′(k) + (1− δ)x). (6)

The first condition equates the current marginal utility of consumption to its
opportunity cost, the expected value of a future extra unit of capital. The
second condition states that the marginal value of capital can be obtained by
allocating an extra unit of capital to current uses only. The two conditions
imply the Euler equation

u′(ct) = βEtu
′(ct+1)(zt+1f ′(kt+1) + (1− δ)xt+1) (7)

where Et takes the expectation conditional on information up to time t.
An interesting special case (Stokey and Lucas, 1989, section 2.2; Obstfeld

and Rogoff, 1996, section 7.4) is the one where u(c) = a0 ln c - the case
of unitary relative risk aversion - where capital depreciates fully within the
period (δ = 1) and where f(k) = kα, a Cobb-Douglas production function
(0 < α < 1). In this case, which we will denote the logarithmic model, the
policy function is

k̃ = ϕ(zf(k)) = αβzka. (8)

With one exception - the full depreciation assumption - this model is a
stochastic version of the Solow growth model with income y = zf(k) and
the savings rate equal to αβ. Substituting kt+1 for k̃ and kt for k, and taking
logs gives

ln kt+1 = ln(αβ) + E ln z + α ln(kt) + εt,

where εt = ln zt − E ln z. Multiplying by α, we obtain the canonical growth
regression6

ln yt+1 − ln yt = [α ln(αβ) + E ln z] + (α− 1) ln yt + εt+1. (9)

5Partial derivatives are denoted by subscripts, e.g. Vk = ∂V/∂k.
6See, for example, Barro and Sala-i-Martin (1995), chapter 11.
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Hence within the class of stochastic Ramsey models there exists a model,
the logarithmic model, which is consistent with the canonical growth regres-
sion specification. We define the latter more formally as the log-linear growth
path

ln yt+1 − ln yt = b+ (a− 1) ln yt + εt+1, (10)

where (0 < a < 1) and b includes a country effect.7

In practice we observe time series for income {ỹt}, and sometimes also
on consumption {c̃t}.8 If these are taken to be generated by a model in the
class of stochastic Ramsey models the question arises whether that model
can be identified if estimates of the coefficients a and b were available. The
following theorem states that this is impossible.

Theorem 1 If an income path {ỹt} satifies (10) and is generated by a model
in the class of stochastic Ramsey models then the depreciation rate δ is iden-
tified (δ = 1) but neither the production function f nor the utility function u
is identified.

Proof. see Appendix.

In textbooks the deterministic Ramsey model is often presented as a
theoretical basis for the canonical growth regression. An immediate corollary
of Theorem 1 is that this model is not identified.

The Theorem limits the usefulness of growth regressions. Since it is im-
possible to use the regression results to recover an underlying structural op-
timisation model it is, for example, not feasible to estimate the effects on
growth of changes in technology. This may come as a surprise: the loglin-
earization used in textbooks suggests that the production function is identi-
fied. In fact it is not, let alone that the results can be used to calculate the
effects of a change in technology (e.g. a change in the parameter α in the
Cobb-Douglas case) on growth.

Why identification is desirable may be illustrated with a second example.
Suppose the question at hand is whether an increase in risk (in the sense of

7When the canonical growth regression is derived from a loglinearization of the Solow
model the coefficient a is not equal to the exponent α, but it does satisfy 0 < a < 1.

8In microeconomic applications there may be observations on the capital stock (e.g.
Elbers et al., 2002). This greatly simplifies identification of the structural model.
In some growth regressions the initial investment share is included as one of the regres-

sors so that information on consumption is used at least implicitly.
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a mean-preserving spread) affects growth. It is easily seen that the answer
is negative for the logarithmic model: the policy function (8) involves z but
not its distribution. It is also known (e.g. Elbers et al., 2002) that for
other stochastic Ramsey models (e.g. with CES rather than Cobb-Douglas
production functions) the effect of risk on growth can be substantial. Hence
it is important to be able to identify the production function. Suppose all one
could estimate is a loglinear approximation of the income dynamics, i.e. (10),
then one would have to conclude that the question cannot be answered: the
loglinear approximation destroys any distinction between models in which
risk matters for growth and those in which there is no such effect.9

Of course, some models can be identified from income observations alone;
an obvious example is the class of Solow models. However, as Theorem 1
states, the class of stochastic Ramsey models cannot be so identified.

However, in many empirical applications observations are available not
only on y but also on c. The following theorem shows that this additional
information is sufficient to ensure identification of stochastic Ramsey models.

Theorem 2 If income and consumption paths {yt, ct} generated by a model
in the class of stochastic Ramsey models are available then the model can be
identified.

Proof. see Appendix.

Clearly, this Theorem offers no comfort to those who consider identifi-
cation of the structural model desirable but want to maintain the growth
regressions tradition of using only income dynamics {ỹt}. However, if that
limitation is lifted the model is identified. Also, estimating a stochastic Ram-
sey model (while much more complicated than Barro-regressions) is feasible,
using estimation by simulation (Elbers et al., 2002, provide an example using
micro data).

3 Conclusion
9It might seem that there is a simple way out of this dilemma: the effect of risk on

growth could be assessed directly by using some measure of risk as an additional regressor
in a Barro-type regression. However, this introduces a specification error by imposing that
the effect of risk on growth is independent of the level of income. Such separablity is in
general not satisfied by stochastic Ramsey models.
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If growth regressions are to be based in economic theory it seems reasonable
to require that they must be consistent with a model in which investment is
endogenous and investors are exposed to risk. This rules out both the Solow
model (in which the savings rate is exogenous) and deterministic intertem-
poral optimisation models. We have suggested that the model should belong
to the class of stochastic Ramsey models.
We have shown that that type of model cannot be identified from the canon-
ical, Barro-type growth regression. This makes it impossible to use such
regressions for answering key questions, e.g. regarding the effect of changes
in technology or in risk on growth. Such questions require identification of
the structural model. However, we have also shown that the model is indeed
identified if observations on income and consumption are available. If the
link with theory is considered important then the present practice of growth
regressions should be abandoned in favor of estimating structural models.

Appendix: Proofs of Theorems 1 and 2

Theorem 1 If an income path {ỹt} satifies (10) and is generated by a model
in the class of stochastic Ramsey models then the depreciation rate δ is iden-
tified (δ = 1) but neither the production function f nor the utility function u
is identified.

Proof. Using yt+1 = zt+1f(kt+1) and kt+1 = ϕ(yt + (1− δ)xtkt) we find

E(yt+1|yt, kt) = f(kt+1) = f(ϕ(yt + (1− δ)xtkt)).

On the other hand from (10)

yt+1 = zt+1Byat

where B = eb−E ln z. Hence

E(yt+1|yt, kt) = E(yt+1|yt) = Byat .

This can only be true if δ = 1, proving the first part of the theorem.
We prove the second part of the theorem by constructing a counterexam-

ple. Note that the policy function (8) of the logarithmic model is consistent
with the loglinear income dynamics (10). Define T (c) = c+(e−c/2−1). Then
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it is easily verified that the process described by (10) is also consistent with a
stochastic Ramsey model with utility function v(c) ≡ u(c) = u(T−1(c)), the
same F (z), the same depreciation rate (δ = 1) and the production function
parametrically defined by k= s−T ((1−αβ)s), f(k) = (αβs)α. (Since δ = 1
the distribution of x is irrelevant.)

Theorem 2 If income and consumption paths {yt, ct} generated by a model
in the class of stochastic Ramsey models are available then the model can be
identified.

Proof. We proceed in two steps. First we show - for a class of models of
which the stochastic Ramsey models are a subset - that from the distribu-
tion of observed income and consumption paths {ỹt, c̃t} we can identify the
production function f(k), the accumulation function ψ, the depreciation rate
δ, and the distribution of the shocks {zt, xt}. We then show - for the class
of stochastic Ramsey models - that the utility function u and the discount
factor β are also identified.

Consider the class of dynamic models (DM) defined by:

yt = ztf(kt)

kt+1 = ψ(ztf(kt) + (1− δ)xtkt)

ct = ztf(kt) + (1− δ)xtkt − kt+1

k0, z0, x0 given

{zt, xt} are continuous and i.i.d with mean 1

ψ is differentiable and increasing

h(w) = w − ψ(w) is increasing

where f satisfies the same assumptions made for the class of stochastic
Ramsey models and units of k are chosen so that

whenever E(y1|y0, c0) = ŷ1 then k1 = 1.

The accumulation function ψ does not necessarily reflect an optimisation,
unlike the function ϕ.

We distinguish between the observed process {ỹt, c̃t} and the modelled
process {yt, ct}. Since we assume that the observations are generated by a
DM:

(y0, y1, .., yt; c0, c1, .., ct) � (ỹ0, ỹ1, .., ỹt; c̃0, c̃1, .., c̃t)
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it must be the case that (for t � 1):

f(kt) = E(yt|y0, y1, .., yt−1; c0, c1, .., ct−1) � E(ỹt|Ot−1).
whereOt−1 denotes the history of the observed process ỹ0, ỹ1, .., ỹt−1; c̃0, c̃1, .., c̃t−1.

It follows that
zt � ỹt/E(ỹt|Ot−1).

Note that ct = h(yt + (1− δ)xtkt). It follows that

xt �
h−1(c̃t)− ỹt

E([h−1(c̃t)− ỹt]|Ot−1) .

It is convenient to construct the modelled process on the same probability
space as the observed process. If we take zt = ỹt/E(ỹt|Ot−1) (almost surely
or a.s.) and xt = [h

−1(c̃t)− ỹt]/E([h
−1(c̃t)− ỹt]|Ot−1) then yt = ỹt (a.s.) and

ct = c̃t (a.s.) so we can drop the tilde without danger of confusion.
Now suppose there exists a second DM consistent with the observed pro-

cess, denoted by underscored symbols. From the above we can construct the
second process in such a way as to ensure that f(kt) = f(kt) (a.s.) and
zt = zt (a.s.) so that we can drop the underscoring of z. Since the produc-
tion functions f and f are increasing we can write kt as a function of kt (and
vice versa). From ct = ct = c̃t (a.s.):

h(yt + (1− δ)xtkt) = h(yt + (1− δ)xtkt) (a.s.)

hence
yt = I(yt + (1− δ)xtkt)− (1− δ)xtkt (a.s.) (11)

where I = h−1 ◦ h.
Differentiating this last expression with respect to zt we obtain:

f(kt) = I ′(yt + (1− δ)xtkt)f(kt) (a.s.)

and hence
I ′(yt + (1− δ)xtkt) = 1 (a.s.)

so that the function I satisfies

I(w) = a+ w

where a is a constant. We now show that a = 0 so that h and h (and
hence ψ and ψ) are identical.

9



From (11) it follows that

(1− δ)xtkt − (1− δ)xtkt = a (a.s.). (12)

Taking expectations (conditional on Ot−1):

(1− δ)kt − (1− δ)kt = a (a.s.)

and hence kt is a linear function of kt:

kt =
a

1− δ
+
1− δ

1− δ
kt (a.s.). (13)

Similarly, from (12) it follows that xt is a linear function of xt:

xt =
a+ (1− δ)xtkt
(1− δ)kt

.

Since xt and xt are independently distributed from kt and kt, the ratio kt/kt
must be constant. Using this in (13) gives a = 0 and since ŷ1 = f(1) = f(1)
it follows that δ = δ.

We conclude that the two DMs are identical: from observations ỹ, c̃ we
can identify the production function f , the accumulation function ψ, the
parameter δ, and the distributions of the shocks z and x.10

It remains to identify the utility function u and the discount factor β for
the subset of dynamic models in which capital accumulation is optimal, i.e.
stochastic Ramsey models. For this second part of the proof we first show
that the accumulation path can be characterized as a martingale. We then
apply Doob’s martingale convergence theorem to show that only one value of
β is compatible with optimality. The same theorem then implies uniqueness
of the utility function u (up to an affine transformation).

Note that kt+1 = ϕ(wt) and ct = h(wt) = wt − ϕ(wt) are both increasing
functions of wt so that we may write ct as a function of kt+1 alone, say
ct = a(kt+1). Define

qt = u′(a(kt))

Bt = β(ztf
′(kt) + (1− δ)xt)

10Hence the class of DMs is identifiable irrespective of whether ψ reflects a mechanistic
process (as in the Solow model) or an optimisation.
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then the Euler equation (7) may be written as

qt+1 = EtBt+1qt+2.

We consider paths starting with positive w0. By recursion, for all T ,

qt+1 = EtBt+1qt+2

= EtBt+1(Et+1Bt+2qt+3)

= EtEt+1(Bt+1Bt+2qt+3)

= Et(Bt+1Bt+2qt+3)

= ..

= EtBt+1Bt+2..Bt+T qt+T+1.

In particular,

q1 = E0B1B2..BT qT+1

= EB1B2..BT qT+1

since starting conditions are given. Define

St = B1B2..Btqt+1.

Note that EtSt+T = St and that ESt = E|St| = q1 (which is finite since
w0 > 0). Hence the sequence {St} is a martingale and the expectation E|St|
is bounded. This allows us to apply Doob’s martingale convergence theorem
(Doob, 1953) and conclude that there exists a random variable S such that

lim
t→∞

St = S a.s.

Suppose there are two stochastic Ramsey models (characterized by β, u
and β̃, ũ with β > β̃, without loss of generality) consistent with the observed
process. Then, with probability 1:

S̃t
St
= (

β̃

β
)t
q̃t
qt
→ S̃

S
. (14)

Choose 0 < m < M < ∞ for which limt→∞ P{m < wt < M} =
π[(m,M)] > 0.
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From Theorem 4.1 in Tierney (1996) the Markov chain is positively re-
current so that P{m < wt < M infinitely often} = 1. Hence for ω ∈ A =
{m < wt < M infinitely often} there exists a sequence tk such that

(
β̃

β
)tk

q̃tk
qtk
≤ ( β̃

β
)tk

ũ′(h(m))
u′(h(M))

. (15)

Note that the RHS converges to 0 so that S̃(ω)/S(ω) = 0 and hence
S̃(ω) = 0.11 This implies ũ′(c1) = 0 and this would violate the Uzawa
conditions. Hence β = β̃.

To prove identification of u(c) (up to an affine transformation) we must
show that ũ′(c) = γu′(c) for some positive constant γ. Let w1 
= w2 be in
the support of π and ci = h(wi) the associated consumption values. We
will use the fact that h(w) is strictly monotonic and continuous. Assume
that ũ′(c1)/u′(c1) 
= ũ′(c2)/u′(c2). By continuity of u′(c) and ũ′(c) and h(w)
there exists δ0 > 0 such that for all w ∈ B1 = (w1 − δ0, w

1 + δ0) and
ŵ ∈ B2 = (w2 − δ0, w

2 + δ0) we have∣∣∣∣ ũ′(h(w))u′(h(w))
− ũ′(h(ŵ))

u′(h(ŵ))

∣∣∣∣ > ε0 =
1

2

∣∣∣∣ ũ′(c1)u′(c1)
− ũ′(c2)

u′(c2)

∣∣∣∣ > 0. (16)

Since w1 and w2 are in the support of π, it follows that π(Bi) > 0 and
P{wt ∈ Bi infinitely often} = 1. Also, the set A1 = {ω|q̃t(ω)/qt(ω) →
S̃(ω)/S(ω)} has probability 1. Hence, with A = A1∩{wt ∈ B1∩B2 infinitely
often}, P (A) = 1.

Take ω∈ A. Then there exist subsequences tk and τ k such that wtk(ω)∈
B1 and wτk(ω)∈ B2 for all k. Note that q̃tk(ω)/qtk(ω) − q̃τk(ω)/qτk(ω) → 0
since ω∈ A1 while |q̃tk(ω)/qtk(ω)− q̃τk(ω)/qτk(ω)| > ε0 > 0 by equation (16).
Hence we have a contradiction and it follows that ũ′(c)/u′(c) is constant for
all c ∈ {h(w)|w ∈support(π)}. Denote the proportionality constant by γ.
Note in particular from equation (14) that also S̃/S = γ with probability 1.
To prove that ũ′(c)/u′(c) = γ for arbitrary c > 0, consider starting the DM
process in w0 = h−1(c). Now it immediately follows that

ũ′(c) = E S̃ = γES = γu′(c).

This completes the proof.

11Since ES is finite the case S(ω) =∞ cannot arise.
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