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Abstract

This note clarifies the relation between two competing definitions of the contri-

bution to price discovery in market microstructure models: (i) the information

share and (ii) the common factor component weight. It is demonstrated that

the two measures are closely related, but that only the information share takes

into account the variability of the innovations in each market’s price.
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This note attempts to clarify the relation between two competing definitions of the

contribution to price discovery in market microstructure models: (i) the information

shares as defined in Hasbrouck (1995) and (ii) the common factor component weight

of Gonzalo and Granger (1995), applied in the market microstructure literature by

Booth, So and Tse (1999), Chu, Hsieh and Tse (1999) and Harris, McInish and

Wood (2000).

Let Xt be the vector of prices for the same security in n markets. Each individual

price series xit is non-stationary, but because of long run arbitrage, the series will be

cointegrated. The multivariate price process is given by the vector error correction

model

∆Xt = γzt + A1∆Xt−1 + ..+ εt (1)

where zt = α′Xt are the stationary error correction terms.

There are several ways to decompose the price vector in a permanent, I(1), com-

ponent and a transitory, I(0), component. The traditional decomposition is the Stock

and Watson (1988) decomposition where the permanent component is a random walk

with serially uncorrelated increments. This decomposition works from the Vector

Moving Average representation of the model

Xt = εt + C1εt−1 + C2εt−2 + .. = C(L)εt (2)

which can be written as

Xt = C(1)
t∑

s=0

εs + C∗(L)εt (3)

If the vector Xt is cointegrated, the Granger Represention Theorem (Engle and

Granger, 1987) states that C(1) satisfies the properties α′C(1) = 0 and C(1)γ = 0.

Thus, we may write

Xt = α⊥θ
′
t∑

s=0

εs + C∗(L)εt (4)

with α′⊥α = 0 and θ′γ = 0. The term θ′
∑t
s=0 εs is the common stochastic trend

component. The common trend innovations, θ′εt are serially uncorrelated by con-

struction. Notice that this common trend is defined as a function of the innovations

εt and therefore involves current as well as lagged values of Xt.

Gonzalo and Granger (1995) propose an alternative decomposition of Xt in per-

manent and transitory components, where the components are linear combinations

of Xt alone, and do not involve lagged values of Xt:

Xt = A1ft + A2zt (5)
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with ft = β′Xt and zt = α′Xt as before. As an additional identifying assumption,

GG assume that there is no long run Granger causality from zt to ft. It turns out

that this assumption implies for the permanent component A1ft = α⊥ft and

ft = β′Xt = (γ′⊥α⊥)
−1
γ′⊥Xt (6)

with γ′⊥γ = 0 and hence β′γ = 0. This definition of the common factor is different

from the Stock-Watson definition because the changes in ft are serially correlated.

How are the decompositions related? An instructive way to look at this issue

is by substituting the Stock-Watson decomposition of Xt into the Gonzalo-Granger

definition of the common factors ft:

ft = (γ′⊥α⊥)
−1
γ′⊥Xt

= (γ′⊥α⊥)
−1
γ′⊥

{
α⊥θ

′
t∑

s=0

εs + C∗(L)εt

}

= θ′
t∑

s=0

εs + st (7)

where st is stationary. So, we see that the random walk part of the GG common

factor ft is identical to the Stock-Watson common factor (this result is also stated in

Proposition 5 of Gonzalo and Granger).1 Sharing the same random walk component

is however not a very special property, because all linear combinations of the mar-

ket’s prices, and indeed each individual market price, have the same random walk

component.2

Market microstructure models

For the applications to market microstructure models, it is natural to assume that

the prices share the same, scalar, common non-stationary component. Because of

market microstructure frictions, however, there are temporary deviations from the

equilibrium price, but these are transient (stationary). Hence, the cointegrating rank

of the VECM is n− 1, and γ is an n× (n− 1) matrix. The n− 1 dimensional vector

1In both decompositions, the permanent component and the transitory component are mutually

correlated at (possibly) all leads and lags. An alternative decomposition is therefore in orthogonal

(i.e. cross serially uncorrelated) permanent and transitory components. These decompositions will

not be considered here though.
2I thank Joel Hasbrouck for pointing this out.
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of error correction terms, zt, can be defined in many ways but the simplest definition

is

zt =


x1t − xnt
|

xn−1,t − xnt

 (8)

I shall use this definition in the remainder of this note. With this definition, α⊥ = ι,

an n× 1 vector of ones. The Stock-Watson decomposition then becomes

Xt = ιθ′
t∑

s=0

εs + C∗(L)εt (9)

where θ is a n × 1 vector that satisfies θ′γ = 0. Hasbrouck (1995) suggests to use

the variance of θiεit, scaled by the total variance of the common trend innovations

θ′εt as a measure of the contribution to price discovery of market i. He calls this

the information share of market i. If there is correlation between the elements of

εt, the information shares are not uniquely defined but one can define a range for

the information share. This measure of the contribution to price discovery has been

applied in many empirical microstructure studies.

The Gonzalo-Granger decomposition in market microstructure models is

ft = β′Xt = (γ′⊥ι)
−1
γ′⊥Xt (10)

where β and γ⊥ are n × 1 vectors, and the elements of β add up to one. Booth, So

and Tse (1999), Chu, Hsieh and Tse (1999), and Harris, McInish and Wood (HSW,

2000) suggest to use βi as a measure of the contribution to price discovery of market

i.

What is the relation between the two definitions? First, notice that in the mar-

ket microstructure setting, where the cointegrating rank is n − 1, there are n − 1

orthogonality conditions β′γ = 0 and θ′γ = 0. These imply that that the vectors

β and θ are equal, except for a scale factor. Since β′ι = 1 by construction, we find

that β = (θ′ι)−1θ. Hence, the information share and the GG common factor weights

are closely related. The GG common factor weight is a normalized θi, whereas the

information share is a normalized θ2
i σ

2
i . The GG common factor weight measures the

impact of εi on the innovation in the permanent component, whereas the information

share measures the contribution of εi to the total variance of the innovation in the

permanent component.

An analogy with the standard linear regression model y = β′X + ε is useful here:

the coefficient βi measures the impact of a change in the explanatory variable Xi,
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whereas the (normalized) product β2
i σ

2
Xi

measures the fraction of the variance of y

explained by Xi (a partial R2).

Examples

A few simple examples may clarify these results. In both examples there are two

markets. The error correction term is the difference between the prices on each

market, zt = X1t − X2t. For simplicity, there are no further lagged price effects, so

Ak = 0 for all k. The VECM then is(
∆X1t

∆X2t

)
=

(
γ1

γ2

)
zt +

(
ε1t

ε2t

)
(11)

The first example concerns the one-way price discovery hypothesis. Under that

hypothesis, only the second market error corrects to the price difference,

∆X1t = ε1t (12a)

∆X2t = γ2zt + ε2t (12b)

for some strictly positive γ2. So, γ = (0, γ2)′ and the orthogonal complement of this

vector is γ⊥ = (θ1, 0)′ for any non-zero θ1. In this case, β = (1, 0)′ so that ft = X1t.

In the Stock-Watson decomposition, θ = (θ1, 0). Both definitions of the contributions

to price discovery give the first market a 100% information share.

In the second example, the two markets error correct half of the difference between

the prices

∆X1t = −0.5zt + ε1t (13a)

∆X2t = 0.5zt + ε2t (13b)

Hence, γ = (−0.5, 0.5)′ and θ = γ⊥ = (θ1, θ1)′ for any non-zero θ1. Hence, the

common factor ft = 0.5X1t + 0.5X2t is uniquely defined. The GG common factor

weight will assign a 50% contribution to price discovery to each market, whatever the

variances of εit. The information shares depend on the variance of εit. For example,

assuming that the errors are uncorrelated, the information shares are

ISi =
σ2
i

σ2
1 + σ2

2

(14)

with σ2
i = Var(εit). The information shares may be larger or smaller than 50%,

depending on the error variances. As an extreme case, suppose that X2t is perfectly

predictable from the past, i.e. σ2
2 = 0. The information share for the second market

is zero, but the GG common factor weight is 0.5.
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Conclusion

This note showed that there is a very close relation between the two definitions of

contribution to price discovery. The coefficients β of the GG common factors are

just a normalized elements of the vector θ that defines the Stock-Watson common

stochastic trend (Hasbrouck’s efficient price). The major difference between the two

approaches is the role of the variance of the innovations. The GG definition only

works with the ’weight’ that the innovation of market i has in the increment of the

efficient price θ′εt. This definition ignores the variance of εit. The information share

measures the share in the total variance of the efficient price change θ′εt contributed

by market i.

In my view both definitions have their merits. The GG definition is useful if

one wants to construct the innovations in the efficient price from the full innovation

vector εt. This goes back to the motivation of the Gonzalo and Granger (1995)

paper; they are interested in constructing a permanent component that is a simple

linear combination of the data (ft = β′Xt). Since the random walk part of ft is the

efficient price, the coefficients βi tell how much weight to attach to the innovation

(=unpredictable change) in the price from market i in constructing the innovation

in the efficient price. Hasbrouck’s definition is more concerned with the amount of

variation in the prices, and how much of that is explained by the price changes on

market i. This is a more proper measure of the amount of information generated by

each market.
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