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Abstract 

Queueing networks are studied with finite capacity constraints for clusters of stations. First, 
by an instructive tandem cluster example it is shown how a product-form modification 
method for networks with finite stations can be extended to networks with finite clusters. 
Next, a general result is established by which networks with finite clusters can be studied at 
cluster level by merely keeping track of the total number of jobs at these clusters, that is, by 
regarding these clusters as aggregate stations. This result is of practical interest to conclude 
simple performance bounds at global network level. A number of illustrative examples with 
numerical support are provided. 
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1 INTRODUCTION 

Background 

Finite capacity limitations, such as on storage buffers or number of machines, are most 
natural in practical manufacturing or assembly line systems. These finite constraints might 
not only be imposed upon a single station but also on a group (cluster) of stations 
simultaneously, for example due to common storage buffers for clusters of stations. 

In order to evaluate the performance of such systems, over the last two decades queueing 
network descriptions have widely been used and shown to provide a powerful modeling tool. 
Typical performance measures of interest are: 

• a throughput 
• a workstation utilization 
• a delay or blocking probability 
• a total process or response time. 

Motivation 

Unfortunately, closed form expressions for queueing networks, most notably product-form 
expressions, are usually not obtainable under finite constraints. Numerous approximation 
techniques have therefore been developed over the last decade (see [1] and references 
therein). Despite the usefulness of these approximations however, as disadvantages they 

• are computationally expensive 
• provide quantitative rather than qualitative results 
• heavily rely upon detailed underlying distributional assumptions 
• do not generally provide a strict confidence on the accuracy of the results. 

In practical situations, in contrast, one might just be interested in rough but guaranteed 
indications of orders of magnitude. In [9] and related earlier references, therefore, a bounding 
technique was developed for networks, such as assembly lines, with finite (individual) 
stations. 

This technique was based on modifying a non-product-form network into a product-form 
network by enforcing a notion of balance per individual station. Numerical support indicated 
a practical usefulness for both quick engineering and design purposes, in combination with 
the fact that it could be applied at down-to-earth physical basis. 



 

3 

Objective and results 

In view of the above motivation, this paper aims to extend the application of this technique to 
assembly line queueing network structures with finite constraints for cluster of stations. This 
extension is not evident, as it requires station balance in combination with a new notion, 
which will be called cluster balance. 

It will be shown how these two notions are to be and can be combined at operational basis in 
order to extend the bounding technique to assembly line structures with finite clusters of 
stations. To this end some generic examples will be studied and be supported by numerical 
results. These results indicate a potential practical usefulness for quick evaluation purposes. 

2 AN INSTRUCTIVE EXAMPLE 

2.1 THE FINITE STATION CASE 

First, let us consider a most simple but nevertheless unsolvable system, which can be 
regarded as representative for finite assembly or production (manufacturing) lines. 

This concerns a finite tandem queue with Poisson arrival rate λ and exponential single servers 
with rates µ1 and µ2 at stations 1 and 2 respectively. Furthermore, station i cannot contain 
more than Ni jobs (the one in service included). When station 1 is saturated, an arriving job is 
rejected and lost. When station 2 is saturated the service at station 1 is effectively stopped (cf. 
[3] for equivalence results of different blocking protocols). 

As simple as the system may look to analyze, there is no simple expression for the 
throughput, that is, the mean number of finished parts per unit of time, and as of today no 
explicit expression at all in terms of input and service parameters appears to be available. The 
large number of publications purely devoted to efficient approximations for such systems, 
however, might indicate the practical relevance. (See e.g. [1]). 

Simple bounds 

As following from the results in [9], a simple explanation for this system to be unsolvable, is 
the lack of a so-called notion of station balance (or flow balance per station) at station 1. 
Indeed, when station 2 is saturated: 

The flow out of station 1 is blocked and thus equal to 0. 
But the flow into station 1 is still possible and thus larger than 0. 

N1 N2B N1 N2B
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As the notion of station balance is responsible for a product-form expression, the following 
artificial modification, purely to evaluate the system and not to be implemented in practice, is 
therefore suggested in order to restore station balance. 

When station 2 is saturated, also stop the input. 
Hence not only the outflow, but also the inflow at station 1 then becomes 0. 
In addition, by regarding the system as cyclic we should also stop station 2 
when station 1 is saturated.  

This modification transforms the system into an easily solvable system from which one can 
derive a simple closed form expression for the throughput H or the directly related blocking 
probability B for arriving jobs to get blocked as given by (2.1) with c a normalizing constant: 
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 (2.1) 

Intuitively, it is clear that this blocking probability will be larger than in the original system 
and thus provides an upper bound Bu for the blocking probability (and thus leading to a lower 
bound HL for the throughput) of that for the original non-tractable system. Counterintuitively, 
however, a formal proof appears to be harder to establish, as the system is not stochastically 
monotone (see [15]). Nevertheless, formal proofs have been developed (see [10], [15]). In a 
similar fashion, also a lower bound BL (and upper bound HU) can be obtained by rejecting 
jobs only when N1 + N2 jobs are already present while allowing up to N1 + N2 jobs at either 
station. 

One cannot expect these bounds to be anywhere near too accurate as they are based on drastic 
distortions of the original behaviour. (The average value of the lower and the upper bound 
appears to be quite reasonable though, roughly within 10% accuracy). 

Nevertheless, as rough quick indicators of orders of magnitude or qualitative behaviour they 
can still be practically useful. In the next section we therefore aim to investigate the possible 
extension to more complicated situations in which constraints are imposed upon more than 
one station simultaneously. 

2.2 THE FINITE CLUSTER CASE 

In practical production environments, however, capacity constraints are often imposed upon 
clusters of workstations rather than individual workstations. It would thus be appealing if for 
such cases the same principle of station balance can also be operated at cluster level, by 
regarding a cluster as one aggregated station. 

T1 T2B T1 T2B
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Consider for example the cluster extension of the above tandem case with four stations to be 
seen as a two-cluster model with finite constraints T1 and T2 for the total number of jobs in 
cluster 1 (stations 1 and 2) and cluster 2 (stations 3 and 4). A similar modification as in the 
preceding case would then seem appealing at cluster level to enforce a simple product-form 
expression by also rejecting jobs at cluster 1 when cluster 2 is congested, from which an 
upper bound for the blocking probability would be derived. 

In other words, at first glance we would expect a similar simple product-form bounding 
approach by simply regarding a cluster as a station and transforming the notion of balance per 
station into balance per cluster by just keeping track of the total number of jobs at each 
cluster. This will be referred to as global cluster balance. 

However, as the bounding approach is based upon product-forms, which in turn follow from 
the global balance equations for the underlying Markov process, a detailed state description is 
still required and one has to be careful. Indeed, by still allowing station 1 to continue to work 
while the second cluster is saturated (t2 = T2), station balance and hence a product-form is 
violated as: 

the inrate at station 1 is 0 
but the outrate at station 1 is positive. 

By also taking station balance into account within the clusters the following modification 
could therefore be suggested to enforce a product-form. 

When cluster 2 is saturated (t2 = T2), 
stop the input as well as both stations at cluster 1. 
 
In addition, when cluster 1 is saturated (t1 = T1),  
stop cluster 2, that is, stop both stations at cluster 2.  

Indeed, with µj(nj) the service rate of station j when nj jobs are present and provided the 
station works, with S the set of admissible states as given by 

S = {n = (nl, n2, n3, n4) | tl = n1+n2 ≤ T1; t2 = n3+n4 ≤ T2; t1+t2 ≠ T1+T2} 

and with 1{A} the indicator of event A, i.e. 1{A} = 1 if A is satisfied and 1{A} = 0 otherwise, 
under the above modification one easily verifies the station balance equations, for any n ∈  C 
and all stations j = 1, 2, 3, 4, given by: 
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when substituting the product-form, with c a normalizing constant at S: 
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With B the corresponding loss probability of the original system, a simple upper bound BU is 
thus obtained by 

 
1 1 2 2U Uor{ | T T }B (n)n t t π= ==�  

As in section 2.1, also a lower bound product-form modification BL can be obtained by 
allowing up to T1 +T2 jobs at either cluster (and individual station) while rejecting jobs only 
when T1 +T2 jobs are already present. 

Below some numerical results are given for the case of single server stations. Here µi 
represents the service speed of station i, BL and BU are the easily obtained lower and upper 
bound for the blocking probability, Bav = (BL + BU) / 2 and B is obtained by (computationally 
expensive) numerical computation under the assumption of exponential services. Here one 
may recall that also bounds for the throughput H are established by virtue of the relation (with 
λ the arrival intensity): 

 1H ( B)λ= −  

 

Table 1: Lower and upper bounds for two-cluster tandem example 

 µ1 µ2 µ3 µ4      T1 T2  BL BU     Bav  B 

  1 1 1 1 
  1 1 1 1 
  1 1 1 1 
  2 2 1 1 
  1 2 3 2 
  1.1 2 3 2 

     3 5 
     6 6 
     8 8 
    10 10 
    10 10 
    10 10 

 .33 .52 
 .25 .40 
 .20 .33 
 .10 .17 
 .054 .101 
 .021 .065 

 .43 .42 
 .33   .30 
 .27 .24 
 .14 .12 
 .078 .084 
 .048 .049 

 

3 GENERAL RESULTS 

The instructive example in section 2.2 illustrates that a detailed state description is still 
required in order to conclude a product-form also when capacity constraints are imposed only 
upon clusters of stations. In other words, one cannot just simply regard a cluster as one 
aggregate station. On the other hand, for practical purposes, instead of checking all station 
balance relations for each individual station and in all possible detailed state situations, it 
seems intuitively appealing and computationally attractive to transform the product-form 
conditions and insights for finite individual stations to clusters of stations as if they can be 
aggregated as individual stations, and thus by just considering the total numbers of jobs at 
these clusters. 
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In this section we will give a more formal treatment to resolve this theoretical and practical 
conflict. To this end, we will distinguish a notion of detailed and of global cluster balance 
(DCB and GCB), in relation to the standard notion of station balance (SB). 

Model description 

Consider a closed or open network with N service stations, with in the open case an arrival 
rate γj at station j = l, ..., N and in the closed case a fixed number of jobs. Let λ = [γ1+�+ γN]. 
The service rate at station j is µj(nj) when nj jobs are present. Furthermore, the stations are 
partitioned in disjoint clusters Cl, C2, �, CK. Here we typically have in mind that a job 
arriving at a cluster can be blocked based upon the total number of jobs at this cluster. 

More precisely, with a station vector n = (nl, �, nN) denoting the numbers of jobs ni at 
stations i and the cluster vector t = (t1, �, tK) denoting the total number of jobs tk at cluster 
k = 1, �, K, a job completing service at a station i ∈  Cp will route to station j ∈  Cq with 
probability: 

 
1
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 (3.1) 

where Bpq(t) represents a probability. In words, a routing from one cluster to another, say 
from station i to j, will be requested with fixed probability pij. This request is accepted with 
probability Bpq(t) where p and q represent the clusters containing i and j and it is blocked 
otherwise. When blocked, the job remains at station i. In addition, the routing within a cluster 
may depend on the cluster population t. For example, a finite constraint Tq for cluster q is 
modeled by: 

 
q1 if  t 1 for 

0 otherwise

T ( )
B (t) q

pq

q p+ ≤ ≠�
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�

 

Furthermore, for the open case we also include values i = 0 and j = 0 and correspondingly 
p = 0 and q = 0, to reflect possible blocking upon arrival at or departure from the network, 
where we must read p0j(n) = [γj/γ] B0q(t) and where the probability for leaving the network is 
given by pi0(n) = pi0 Bi0(t). 

Remark 3.1 (Delay / stop blocking) In fact, we can also regard 

 D (n) (n)i ijj i p≠=�  (3.2) 

as a delay factor for the effective service rate of station i when the system is in state n. That 
is, the effective service rate of departing customers at station i in, state n becomes 

 (n) ( ) D (n)i i i inµ µ=  
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while conditionally that a job leaves station i in state n, which implicitly requires that 
Di(n) > 0, it will shift to station j ≠ i with conditional probability 

 
(n)

(n)
D (n)

ij
ij

i

p
p =  (3.3) 

Particularly, when Di(n) = 0 the effective service rate of departing jobs from station i has 
become 0, which is equivalent to stating that service at station i has completely stopped. 

In this respect, for usage later on, we also emphasize here that the routing within a cluster is 
allowed to be blocked with the effect that all internal transitions are blocked. Clearly, due to 
the underlying exponential structure we could state that station i is effectively stopped when 

 0 1D (n) ( (n) )i iip= ⇔ =  

Balance relations 

Our interest is the steady state solution {п(n)}. To this end, let n + ei or n - ei denote the state 
equal to n with one job more (+) or less (-) at station i. Similarly, we define t + ek and t - ek 
for cluster vectors and by n + ei - ej we denote the vector equal to n with one job moved from 
station j to station i. Then {п(n)} is uniquely determined, up to normalization, by the global 
balance relations: 

 { }0 1
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Here we note that also blocked completions at station j are included in both the left and right 
hand side, as we allow i = j to be included. The following result shows that a product-form 
can be obtained if we can reduce these global balance relations to station balance equations. 
In order to purely concentrate on the routing and related blocking or delay aspects, the result 
is presented in a form in which only the routing components remain. Herein, let S be the set 
of admissible states n. Furthermore, for a given station vector m, let t[m] be the 
corresponding cluster vector, i.e. t[m] = (t1, t2, �, tk) with for any k: ∈=�

kk ii Ct n . 

Result 3.1 The steady state distribution exhibits the product-form 
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when there exists a function R(n) at S such that for any m and j with m + ej ∈  S: 

 0R(m ) (m ) R(m) (m) R(m ) (m )j ji j j i ij ii j i je p e p e p eγ≠ ≠+ + = + + +� �  (3.6) 
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Proof 

This is standard (cf [9]) and can be verified directly by substituting (3.5) in (3.4) while 
considering a fixed station j and underlying state m = n - ej for using (3.6). � 

Equation (3.6) has the interpretation that for any station j the flow out of a state n, which we 
can write as n = m + ej due to a departing job at station j, where we could think of unit service 
rates µj = 1, is balanced by the flow into that state due to an arrival at station j, as if one job is 
moving around with fixed underlying state m = n - ej. Accordingly, we will refer to this 
equation as station balance. More precisely, we define the following notions: 

• Station balance (SB):   

(3.6) holds for any m and j with m + ej ∈  S. 

• Detailed cluster balance (DCB):  

 
{ }
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e p e

p e p eγ

∈ ≠

∈ ≠

+ + =

+ + +

� �

� �
 (3.7) 

for any fixed station vector m and cluster k. 

Relation (3.7) has the interpretation that for any underlying detailed state m and for 
any cluster k the total outflow from cluster k with one job more at that cluster is 
balanced by the total inflow into that cluster k due to an arriving job. 

• Global cluster balance (GCB):  
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for any fixed cluster vector s and cluster k. 

Also (3.8) has the interpretation of flow balance for each cluster k separately, but in 
contrast, based only upon the global configuration t for the total number of jobs at 
each cluster. Roughly speaking that is, GCB can be regarded as SB by regarding each 
cluster as an aggregated single station. This notion can therefore be practical for 
verification. 

Result 3.2  

 
1 2( ) ( )

SB DCB GCB� �  (3.9) 
Proof 
Implication (2) is immediate by the summation over all m (see also the figure below). To 
prove implication (1), consider a fixed m and k. Then we can write: 
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By assuming (3.6) for all j, in a similar way we can also write: 
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As the third expression in the right hand side, by interchanging the i, j indices, can also be 
rewritten as: 

, , R(m ) (m ) R(m ) (m ),
k k k ki ij i j ji jj C i C i j j C i C i je p e e p e∈ ∈ ≠ ∈ ∈ ≠+ + = + +� � � �  

equating (3.10) and (3.11) now proves (3.7) and thus implementation (1).  

 � 

Use of result 3.2 

Result 3.2 can be practical in negative and positive sense. In negative sense, as it shows that 
when Cluster Balance (CB) is violated, first checked at global level (GCB) or otherwise at 
detailed level (DGB) also station balance (SB) fails so that the product-form (3.5) cannot 
hold. 

In positive sense, as this failure of GCB or DCB might directly suggest a modification by 
which SB and thus the product-form (3.5) can be regained. Conditions to this end will be 
explored further in this section. 

By the instructive tandem cluster from section 2.2 we already provided an example. When the 
second cluster was saturated (t2 = T2), global cluster balance (GCB) was violated at the level 
of the total number of jobs (t1, t2). By also rejecting arrivals when t2 = T2 and stopping service 
at cluster 2 when t1 = T1 global as well as detailed cluster balance (GCB and DCB) were 
restored. 

Simply stated, result 3.2 justifies a first essential check and possible modification in order to 
conclude a product-form at the easiest physical level, that is the level at which blocking 
arises. 

1

2

4

3

1

2

4

3
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Whether station balance SB and thus the product-form (3.5) can be obtained will still depend 
on the actual blocking protocol, as was also illustrated in section 2.2. Furthermore, while 
GCB is intuitively expected to be easier to verify as based upon just total cluster population, 
the technical form as presented by (3.8) appears less so as it still contains summations over 
detailed states. 

The following result will provide a general structural condition by which this detailed check 
can be avoided so that the product-form (3.5) can be concluded directly purely at global 
cluster level. 

Result 3.3 Consider transition probabilities pij of the form: 

 
0 for 

for ,  
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where for motivational simplicity we assume that pii = 0, and suppose that for some function 
H(.) at SC, the set of admissible cluster configurations, all cluster configurations t and s and 
clusters p with t = s + ep

 ∈  SC: 
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Further, the routing probabilities from one cluster to another are specified as by (3.1) with pij 
as by (3.12). The routing probabilities between stations within one cluster, however are 
specified by either one of the following two possible blocking protocols. Herein, we use the 
notation: 

 D (t) R B (t)p pq qpq p≠=�  (3.14) 

(i)   (Delay protocol) In cluster state t, at any cluster p the service at all 
stations i within that cluster (i ∈  Cp) is delayed by the 
factor Dp(t). Particularly, when Dp(t) = 0, all stations at 
cluster p are stopped. Conditional that a departure takes 
place at station i, so that Dp(t) > 0, the job will route to 
one of the stations j ≠ i with probability [pij(n) / Dp(t)].  

(ii) (Recirculate protocol) Services are not delayed. That is, any station i at a 
cluster p always services at a rate µi(ni) when ni jobs are 
present. However, upon aiming to depart cluster p after a 
completion at a station i, which occurs with probability 
pi0, a job is blocked with probability [1 - Dp(t)]. In that 
case it has to recirculate within cluster p and with 
probability αj routes to station j ∈  Cp. 

0D (t) =p

0D (t) =p
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Then SB and the product-form (3.5) hold with 

 [ ]with  whereR(n) H(t) (n) (n) in
i

i
λ= Λ Λ = ∏  (3.15) 

 (for all  , and any cluster p)
pj j i ij pi C p j Cλ α λ∈= + ∈�  (3.16) 

Proof First note that (3.16) represents the traffic or steady state equations for the 
routing probabilities within one cluster. As we implicitly assumed that any 
station can be visited, otherwise we did not have to include it, this routing 
matrix with p0i and pi0 included is necessarily irreducible, so that a unique 
solution {λi}i ∈  Cp exists. Furthermore, we have, 
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We will first consider the delay protocol i) 

We need to verify the station balance relation (3.6). First note that the delay protocol is 
contained by the formulation of transition probabilities (3.1) by: 
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By substituting these probabilities into the station balance relation (3.6) and using (3.14), for 
j ∈  Cq and with n = m + ej and t = s + ep, in order to verify (3.6) it should thus hold that 
(where we also implicitly assumed that Rpp = 0 by pii = 0 and (3.12)) 
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H(s ) (m) R B (s )
p

p

p j p p

p j p

p i ij p pi C

q i i qp qp q jq p i C

e e

e p e

e e

λ
β α

λ

λδ α
∈

≠ ∈

+ Λ + =

Λ +

+ Λ + +

+ Λ +

�

� �

 (3.18) 

By cancelling Λ(m) and using (3.16) and (3.17), relation (3.18) can be reduced to: 
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0
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H(s ) D (s )

H(s ) R B (s ) H(s) B (s)

p
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p i ij p pi C

q qp qp q p p jq p
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e p e

e e

λ

λ

β α

∈

≠

+ + =

� �+ + +
� �

� �+ + +� �

�

�

 (3.19) 

By using the cluster balance relation (3.13), relation (3.14) and (3.16), relation (3.19) and thus 
(3.18) is hereby verified, which proves (3.6). The proof for the delay protocol is hereby 
completed. 

Next consider the recirculate protocol ii) 

As before, first note that this protocol is contained by the formulation of transition 
probabilities (3.1), by 

 
p1 , (for ,  ,  ),

(for , j , .

(n) [ D (t)]
(n) B (t) R B (t) )

ij ij i j p

ij ij pq i pq pq j p q

p p i j C j i
p p i C C q p

δ α
δ α

= + − ∈ ≠

= = ∈ ∈ ≠  

Again, by substituting these probabilities into the station balance relation (3.6) and fitting in 
(3.14), for j ∈  Cp and with n = m + ej and t = s + ep, in order to verify it should hold that (3.6) 
(note that 1(n)ijj i p≠ =� ) 

 
0

p1

.

H(s ) (m)
H(s) (m) B (s)

H(s ) (m)

H(s ) (m) [ D (t)]

H(s ) (m) R B (s )

λ
β α

λ

λδ α

λδ α

∈

∈

≠ ∈

+ Λ =

Λ +

+ Λ +

+ Λ − +

+ Λ +

�

�
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p

p

p

p j

p j p

p i iji C

p i i ji C

q i i qp qp q jq p i C

e

e p

e

e e

 (3.20) 

By canceling Λ(m) and using (3.17), both for cluster p and clusters q ≠ p, (3.20) reduces to: 

 0

p1 .

H(s )

H(s) B (s) H(s ) R B (s )

H(s ) H(s )[ D (t)]
p

p j

p p q qp qp q jq p

p i ij p ji C

e

e e

e p e

λ

β α

λ α
≠

∈

+ =

� �+ + + +� �

+ + + −

�

�

 (3.21) 

By the cluster balance relation (3.13), with (3.14) substituted, and the traffic equations (3.16) 
for cluster p, relation (3.21) and thus (3.20) is hereby verified, which proves (3.6). Also the 
proof for the recirculate protocol is hereby completed.  � 

Remarks 3.2 

1. Condition (3.12) implies that arrivals at a cluster and departures from that cluster can be 
seen as taking place by one (possibly virtual) entry node and one (possibly virtual) 
departure node, while routing from one cluster to another is independent of the internal 
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source and destination nodes within the clusters. This condition is most natural in 
practical conditions. 

2. Condition (3.13) can be seen as the cluster balance analogue of the station balance 
relations (3.2), purely based on the cluster populations with each cluster as an aggregate 
station. As conditions and insights for station balance to be satisfied are known in the 
literature (see [9], chapter 5) result 3.3 has hereby responded to the primary purpose of 
this paper, i.e. a way of detecting closed form solutions for networks with limited clusters 
to obtain bounds, merely based on global states. This is summarized by corollary 3.4. 

3. A number of references have investigated general aggregation and decomposition results 
for Markov chains in order to simplify computations of steady state distributions (e.g. [2, 
3, 6, 7, 8]). Most notably, the famous Norton result has been known for product-form 
type networks without capacity constraints [2], and been generalized to general product-
form type networks in [4, 5]. 

Result 3.2 is in fact related to results in the latter references, but written out more 
explicitly for the situation of finite clusters. More precisely, it is written in terms for 
physical interpretation in order to establish product-form modifications similarly to the 
finite station case (cf. [9] and [13]), as will be used in section 4. Furthermore, the specific 
forms as in result 3.3 under a delay or recirculate blocking protocol are not considered in 
these references. 

Corollary 3.4  (Product-form detection) 

 Under condition (3.12) and by assuming either of the two blocking protocols as in result 
3.3, closed product-form results can be found purely based on total cluster populations as 
per relation (3.13), regarding each cluster as an aggregate station. 

Corollary 3.5  (Equivalence result) 

 Under the conditions (3.12) and (3.13), the delay and recirculate blocking protocol are 
equivalent. 

4. Particularly, with Bpq(t) taking on strict 0-1 values, the candidate form for H(t) is: 

[ ] { }where for all H(t) R ( )σ σ β σ≠= = +�∏ kt
k p p q qpq p

k
p  

4 ILLUSTRATIVE EXAMPLES 

In addition to the motivating tandem cluster example in section 2.2, in this section we provide 
some further illustration of how the general result from section 3 reduces the search for 
product-form bounds of nón-product-form networks, simply by regarding a cluster as one 
aggregate station. Numerical support will be provided which shows a practical usefulness for 
quick engineering purposes. 
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Here it is stated that formal proofs for product-form modifications that will be provided in 
these examples to lead to (formal) bounds of the loss probability, can be expected along the 
same lines as for the case of finite stations (e.g. [10, 11, 12, 14, 15]). 

4.1 A NESTED BLOCKING STRUCTURE 

As nested analogue of the example from section 2.2, in addition to the total cluster constraints 
T1 and T2, we also allow finite constraints Ni for each individual station i, i = 1, ..., 4.  

Now, both station balance (SB) is violated when any of the stations is saturated (ni = Ni). E.g. 
consider a state (n1, N2, n3, n4) with n4 < N4, the rate out of this state due to a departure at 
station 3, that is, by (n1, N2, n3, n4) → (n1, N2, n3-1, n4+1) is positive, but the rate into this 
state due to an arrival at station 3, that is, by (n1, N2+1, n3-1, n4) → (n1, N2, n3, n4) is zero, 
while also global cluster balance (GCB) is violated as in section 2.2 when either n1 + n2 = T1 
or n3 + n4 = T2. The following modification can therefore be suggested to restore both SB and 
GCB. 

When ni = Ni, stop arrivals and all other stations j ≠ i. 
 
When t1 = T1 stop both stations 3 and 4. 
When t2 = T2 stop both stations 1 and 2 as well as arrivals. 

In a similar fashion as in section 2.2 the station balance relations can then be verified easily 
which guarantee the product-form (3.5) with R(n) = λt where t = n1 + n2 + n3 + n4 at the set of 
admissible states: 

 
1 1 2 2 1 2 1 2{ | , , ,

, 1,..., 4; for all , ith  }
n T T T T

N N N
= ≤ ≤ + ≠ +

≤ = + ≠ + ≠
U

i i i j i j

S t t t t
n i n n i j w j i  

Clearly, this modification leads to an upper bound BU for the loss probability B. Conversely, a 
lower bound BL is obtained by the modification: 

Only reject arrivals when the total number of jobs  
t = n1 + n2 + n3 + n4 = T1 + T2, while any station can 
accommodate up to this number of jobs. 

In this case again the station balance relations are readily verified with the same product-form 
(3.5) with R(n) = λt at the set of admissible states: 

 1 2 1 2{ | , for  1, ..., 4}n T T T T= ≤ + ≤ + =L iS t n i  

T2T1B
N2 N3 N4N1

T2T1B
N2 N3 N4N1
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Some numerical results are presented below. 

Table 2: Results for the nested constraints model 

 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8  N1 N2 N3 N4   T1 T2    BL   BU    Bav   B 

 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 
 2 3 4 5 1 2 3 4 

 2 2 2 2  2 2 
 3 3 4 4  4 4 
 3 2 4 2  4 5 
 3 2 4 2  4 5 

.667 .800 

.500 .700 

.471 .724 
 .158 .398 

 .733 .713 
 .600 .553 
 .598 .572 
 .278 .204 

 

4.2 A CLUSTER WITH PARALLEL STATIONS (random routing) 

In this example we allow a simple but yet random routing to either one of two stations in 
parallel within one cluster (as satisfying the form 3.12), as part of a production line. 

With a total capacity constraint T for the total number of jobs at stations 2 and 3, next to 
finite capacity constraints Ni at each station i, i = 1, ..., 4. 

SB is violated as before when either one of the individual stations is saturated (ni = Ni), while 
in addition when n2 + n3 = T the outflow from station 1 is 0 (even if n1 > 0) while its inflow is 
still positive (when n1 < N1), and conversely, the rate into a state n with n2 + n3 = T due to an 
arrival at station 4 is 0 (as there is no feasible state with n2 + n3 = T+1) while the outrate from 
this state due to a departure from station 4 will be positive. 

By regarding the cluster as one aggregated station as in section 2, product-form modifications, 
for which result 3.3 applies with H(.) ≡ 1 and λ1 = λ, λ2 = λp2, λ3 = λp3, λ4 = λ, by either of the 
following two modifications: 

Stop arrivals and all stations either when one of stations (ni = Ni) 
or the cluster (n2 + n3 = T) is saturated, or 

Stop arrivals when the total number of jobs is equal to 
N1 + T + N4 = S, while each station may contain up to S jobs. 

Clearly, the first modification leads to an upper bound BU and the second to a lower bound BL 
for the loss probability B of the original system. Some numerical results are shown below. 

1

2

4

3

T  

p2

p3

1

2

4

3

T  

p2

p3
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Table 3: Results for clusters with parallel stations 

 µ1 µ2 µ3 µ4  N1 N2 N3 N4   T p2  p3  BL  BU   Bav   B 

 1 1 1 1 
 1 1 1 1 
 2 2 2 2 
 10 10 10 10 
 1 1 1 1 
 1 1 1 1 

 1  1  1  1  1 0.5 0.5 
 1  1  1  1  2 0.5 0.5 
 2 2 2 2  3 0.5 0.5 
 2 2 2 2  4 0.5 0.5 
 5 5 5 5 10 0.5 0.5 
 10 5 5 10 10 0.75 0.75 

0.48 0.75 
0.40 0.75 
0.03 0.30 
0.00 0.02 
0.10 0.30 
0.06 0.17 

0.62 0.64 
 0.58 0.59 
 0.16 0.16 
 0.01 0.01 
 0.20 0.18 
 0.12 0.10 

 

4.3 OVERFLOW MODEL 

In this model we have two finite clusters in parallel with arrivals at cluster 1.  If a job cannot 
enter cluster 1 it is rerouted to cluster 2. Each cluster consists of two finite stations in tandem. 
In addition to the total cluster constraints T1 and T2, we also allow finite constraints Ni for 
each individual station i, i = 1, ..., 4. We assume that µ1 ≤ µ3 and µ2 ≤ µ4. 

For this example cluster balance is violated when cluster 2 is busy while cluster 1 is not 
saturated. As in that case the outflow at cluster 2 is positive, but the inrate is 0. The following 
two modifications are therefore suggested: 

Stop both stations in cluster 2  
when cluster 1 is not saturated (t1 < T1), or 

Assign arriving jobs randomly to either one of the clusters 
proportional to the free buffer capacity at the two clusters. 

With the first modification cluster 2 is slowed down and is kept more congested, thus the 
arrival loss probability will be enlarged and thus leads to an upper bound BU for the loss 
probability B of the original system. With the second modification, the faster overflow cluster 
is used more frequently than in the original system, which leads to a lower bound BL. 

T2

T1
N1 N2

N3 N4

B

T2

T1
N1 N2

N3 N4

B
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Table 4: Results for clusters with overflow 

 µ1 µ2 µ3 µ4  N1 N2 N3 N4   T1 T2    BL  BU   Bav   B 

 1 1 1 1 
 1 1 4 4 
 1 1 2 2 
 1 1 2 2 
 1 1 4 4 
 1 1 4 4 
 3 1 6 4 

 1 1 1 1 2 2 
 1 1 1 1 2 2 
 3 3 1 1 3 1 
 3 3 1 1 6 2 
 3 3 1 1 3 2 
 3 3 2 2 6 4 
 3 5 1 2 6 2 

0.095 0.444 
 0.013 0.222 
 0.251 0.301 
 0.067 0.386 
 0.117 0.343 
 0.023 0.126 
 0.007 0.067 

 0.270 0.300 
0.123 0.108 

 0.269 0.251 
 0.244 0.227 
 0.236 0.258 
 0.075 0.063 
 0.037 0.035 

 

4.4 BREAKDOWN MODEL 

In this model we consider two finite clusters is tandem both subject to breakdowns. In 
addition to the total cluster constraints T1 and T2 we assume repair and breakdown rates for 
cluster 1: γ10 and γ11 and, similarly, γ20 and γ21 for cluster 2. 

Clearly, cluster balance is violated when either cluster is down. The following two 
modifications are therefore suggested: 

Stop both stations in cluster i when cluster j is down (j ≠ i), or 

The breakdown rate for both clusters is 0 (breakdowns do not 
take place). 

Clearly, the first modification leads to an upper bound BU and the second to a lower bound BL 
for the loss probability B of the original system. Some numerical results are shown below. 

Table 5: Results for clusters with breakdowns 

 µ1 µ2 µ3 µ4  N1 N2 N3 N4   T1 T2 γ10 γ11 γ20 γ21    BL  BU   Bav   B 

 1 1 1 1 
 2 2 2 2 
 2 1 2 1 
 1 1 1 1 

 1 1 1 1 1 1 5 1   5 1 
 2 2 1 1 4 4 50 1 50 1 
 2 4 2 4 6 6 50 1 50 1 
 4 4 4 4 4 4 50 1 50 1 

 0.67 0.86 
 0.04 0.42
 0.16 0.48 
 0.33 0.52 

 0.76 0.78 
 0.23 0.20 
 0.32 0.28 
 0.43 0.41 

 

T1 T2

0 / 1 0 / 1

B T1 T2

0 / 1 0 / 1

B
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