
������������	

�
��
��
������
���
��
�����
������
�

��������	
�����
�
���������������

��������
�����

��������	
��
�

�����������
�����

����������������
������
��������������������

����
��
�������
���� ��������
���!��"��������
������

OPTIMAL CONTINUOUS ORDER QUANTITY (s; S)

POLICIES

THE 45-DEGREES ALGORITHM

EM}OKE B�AZSA

TINBERGEN INSTITUTE AND ECONOMETRIC INSTITUTE,

ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738,

3000 DR ROTTERDAM, THE NETHERLANDS,

E-MAIL: BAZSA@FEW.EUR.NL,

AND PETER DEN ISEGER

ECONOMETRIC INSTITUTE, ERASMUS UNIVERSITY ROTTERDAM,

P.O. BOX 1738, 3000 DR ROTTERDAM, THE NETHERLANDS,

E-MAIL: ISEGER@FEW.EUR.NL

Abstract

The most recent optimization algorithm for (s; S) order policies with con-

tinuous demand was developed by Federgruen and Zipkin (1985). This was

also the �rst eÆcient algorithm, which uses policy iteration instead of dis-

cretization. Zheng and Federgruen (1991) developed an even more eÆcient

algorithm for computing discrete order quantity (s; S) inventory policies.

Since the continuous case prohibits enumeration, this algorithm does not

apply to continuous order quantity systems. In this paper an eÆcient algo-

rithm for continuous order quantity (s; S) policies is developed. A marginal

cost approach is used for determining the optimal s. Furthermore, we con-

struct two aid functions (generated by the optimality conditions for s and

S), and exploiting their special properties a simple and eÆcient algorithm

is obtained. The algorithm converges monotonically, such that at every it-

eration a policy improvement is obtained. Since every iteration �nds a local

minimum of the expected average cost, the number of iterations is at most

N , where N <1 represents the number of local minimums. The algorithm

also applies to discrete order quantity systems, in which case it basically

reduces to the algorithm of Zheng and Federgruen (with the di�erence that

in general our algorithm will take larger than unit steps, since we are not

using enumeration.)

2 Optimal continuous order quantity (s; S) policies

1. Introduction

In the present article we give a simple and eÆcient algorithm for �nd-

ing optimal (s; S) policies for inventory systems with continuous demand.

Ongoing research on supply chains has increased the interest in continuous-

demand models. Clark and Scarf (1960) were the �rst to show that the

optimal policy for a two-echelon inventory system, with �nite horizon, can

be computed by decomposing the problem into two separate single-location

problems. For the depot an (s; S) policy solves the problem, and consti-

tutes an optimal order policy for the whole system. However, the lack of an

eÆcient optimization algorithm for such single location problems results in

suboptimality of the overall solution. Although recent research has extended

the results of Clark and Scarf (see, for instance, Eppen and Schrage (1981),

Federgruen and Zipkin (1984), Rosling (1989)), a truly eÆcient algorithm

for the continuous order quantity (s; S) policy was missing until now.

To our knowledge, the only successful attempt to tackle the continuous

demand case directly, without previous discretization, is the optimization

algorithm of Federgruen and Zipkin(1985). Although Zheng and Feder-

gruen(1991) present an improvement in the complexity of the calculation

of an optimal (s; S) policy, their algorithm does not apply to continuous

order quantity systems (since the continuous case prohibits enumeration).

Some of the ideas of the Federgruen-Zipkin algorithm translate nicely into

our algorithm (for comparisons of the two algorithms see Section 4.2.2).

However, our algorithm has a di�erent approach and it is more eÆcient.

The algorithm converges monotonically, such that at every iteration a pol-

icy improvement is obtained. Since every iteration �nds a local minimum

of the expected average cost, the number of iterations is at most N , where

N <1 represents the number of local minimums. Besides, the algorithm is

also easy to understand, every step can be followed using a simple graphical

representation.

Em}oke B�azsa and Peter den Iseger 3

The idea is the following: the lower and upper bounds for the optimal s

and S, found in Section 3, de�ne a feasibility interval for our search. We start

the search for local minimums of the expected average cost function C(s; S)

alternately from the left and from the right of the feasibility interval, which

eventually reduces to zero. It is vital not to leave out any relevant local

minimum while make the search as eÆcient and fast as possible. Therefore,

when a local minimum is found, it de�nes a "relevance level", such that

the next local search will �nd only those local minimums which represent

an improvement with respect to this level. Obviously, every improvement

updates the relevance level. In this way, the last found local minimum will

be the global minimum for C(s; S).

In order to minimize a function with two variables, one can write down two

optimality equations (the derivatives w.r.t. these variables equal 0). Based

on these optimality relations we construct two aid functions, s = �(S) and

s = (S). It turns out that these aid functions have two simple but crucial

properties: (1) both of them increase slower than 45 degrees; and (2)

always intersects � in a maximum or minimum of �, and these are the only

stationary points for �.

Having obtained these results, now the algorithm builds on two simple

observations:

(a) For a �xed order-up-to level S0 one can always �nd a unique �s, which

minimizes C(s; S0). Hence, �s can be determined with no e�ort.

(b) The local minimum points (�s; �S) of C(s; S) coincide with the local

maximum points of �, such that �s = �(�S). Moreover, the global minimum

of C coincides with the global maximum of �.

Thus the problem reduces to �nding the global maximum of �. First we

construct a local search, LM(S0), which �nds the closest maximum of �,

starting at S0. The subroutine LM converges monotonically to this max-

imum point, such that between the starting point S0, and the found local

maximum there will be no other stationary points for � (thus also not for

4 Optimal continuous order quantity (s; S) policies

C). LM is only based on properties (1), (2), and observations (a) and (b).

This maximum point of � de�nes the "relevance level" ŝk (k is the actual

number of iterations). Now solely using property (1) we construct an other

subroutine, which �nds the �rst point where � increases above the rele-

vance level ŝk. At this point we restart the local search LM , �nding the

next maximum, which determines the next relevance level, ŝk+1. Obviously,

due to this construction, ŝk < ŝk+1, that is, C(ŝk; Sk) > C(ŝk+1; Sk+1),

thus the algorithm converges monotonically to the global optimum. All the

subroutines converge linearly. Moreover, since every iteration �nds a local

minimum of the expected average cost, the number of iterations is at most

N , where N <1 represents the number of local minimums.

2. The model and the marginal cost

For the sake of generality this paper focuses on continuous time, continu-

ous order quantity inventory systems, governed by an (s; S) policy. However,

all the results, including the algorithm, remain valid for discrete time, dis-

crete order quantity models. The demand process is a compound renewal

process D(t) :=
PN(t)

k=1 Yk, where Yk; k 2 IN [f0g are the i.i.d. individual

demands. U(x) denotes the renewal function related to the sequence of in-

dividual demands with a renewal in 0, while m(x) denotes its density. K

is the �xed cost to place an order. The long run expected average cost of

a system associated with an (s; S) policy is given by (cf. B�azsa and Iseger

(2000)).

C(s; S) =
K=IEt+

R
S�s

0
IEf(S � t�D1(0; L])U(dt)

U(S � s)
;(2.1)

where f is a given cost-rate function (its form is irrelevant for the further

analysis), D1(0; L] is the limiting distribution of the lead time demand,

and IEt is the expected interarrival time. If we denote with c(s) the long

run expected average cost of an (s � 1; s) model1 without ordering costs,

1This model is in fact the generalized form of the classical (s� 1; s) model: an order is

placed as soon as a demand occurs (thus not necessarily of size 1!)

Em}oke B�azsa and Peter den Iseger 5

knowing that this is given by IEf(s �D(0; L]), C(s; S) can be written in

terms of c(s):

C(s; S) =
K +

R
S�s

0
c(S � t)U(dt)

U(S � s)
;(2.2)

where K is normalized as K := K=IEt. If there is no ordering cost, that

is, K = 0 the optimal policy satis�es S = s and C(s; S) = c(s). Let s� be

the optimal order-up-to level for an (s � 1; s) policy without ordering cost

(K = 0), that is, s� = argmin c(s). From these observations it also follows

for any given s and S, that

c(s�) < C(s; S):(2.3)

Let us assume that �c(s) is unimodal such that

cs(s) < 0 for all s < s
�
; and lim

s#�1

c(s) = +1:(2.4)

The following lemma gives a marginal cost - condition for the optimality of

the reorder level for a given order-up-to level. This lemma can be interpreted

as the continuous version of Lemma 1 of Zheng and Federgruen (1991).

Lemma 2.1. For any �xed order-up-to level S0, the cost function �C(s; S0)

is unimodal in s 2 (�1; s
�) and reaches its minimum in �s. Moreover, �s is

the unique solution of the equality

C(s; S0) = c(s);(2.5)

and the following inequalities hold

C(s; S0) < c(s) if and only if s < �s;(2.6)

C(s; S0) > c(s) if and only if �s < s � s
�
:(2.7)

Proof. Let us start from relation (2.2), and take the derivative of C(s; S0)

w.r.t. s. This yields

Cs(s; S0) = (C(s; S0)� c(s))
m(S0 � s)

U(S0 � s)
:(2.8)

6 Optimal continuous order quantity (s; S) policies

Having observed relation (2.3) it follows that

Cs(s
�
; S0) > 0 for all S0:(2.9)

Let us suppose now that there exists a stationary point s0 < s
� of C(s; S0)

(that is, Cs(s0; S0) = 0). The second order derivative of C(s; S0) in this

point is given by

Css(s0; S0) = �cs(s0):(2.10)

Since s0 < s
�, it is clear through relation (2.4) that Css(s0; S0) > 0, which

implies that s0 is a local minimum for C(s; S0). This means, that any sta-

tionary point s0 < s
� must be a local minimum, which is impossible. We can

conclude therefore, that there is only one minimum: �s < s
�. Furthermore,

�s is a minimum for C(s; S0) if and only if Cs(�s; S0) = 0, that is, if and only

if C(�s; S0) = c(�s), proving thus (2.5).

Furthermore, if �s is a global minimum, and �C(s; S0) is unimodal on

(�1; �s], then for s < �s Cs(s; S0) < 0. This implies directly that C(s; S0) >

c(s) for all s < �s. On the other hand, if �s < s < s
� then Cs(s; S0) > 0,

which means that C(s; S0) < c(s) for all �s < s < s
�. It only remains to

prove that there exists a stationary point for C(s; S0), S0 �xed. Splitting

the expression for C with respect to s� yields:

C(s; S0) � c(s)
U(S0 � s)� U(S0 � s

�)

U(S0 � s)
+

Z
S0�s

�

0

c(S0 � t)
U(dt)

U(S0 � s)
:

Taking s �! �1 yields Cs(�1; S0) < 0, on the other hand Cs(s
�
; S) > 0,

which implies that a stationary point for C does exist.

3. Bounds for the optimal reorder and order-up-to levels

The optimal order-up-to level s� of the (s�1; s) policy (with K = 0) rep-

resents an upper bound for the optimal reorder level s, and a lower bound for

the optimal order-up-to level S of an (s; S) policy. This lower, respectively

upper bound were �rst discovered by Veinott and Wagner (1965).

Em}oke B�azsa and Peter den Iseger 7

Lemma 3.1. If (�s; �S) is an optimal policy, that is, (�s; �S) is a global mini-

mum for C(s; S), then

�s < s
� and s

�
< �S:(3.1)

Moreover, the following assertions hold:

if min
S>s�

C(s; S) > c(s) then �s < s;(3.2)

if min
S>s�

C(s; S) < c(s) then s < �s:(3.3)

Proof. Suppose that the contrary of (3.1) is true, that is �S � s
�. This means

that there exists a Æ > 0 such that �S + Æ = s
�. The cost in these points is

given by

C(�s+ Æ; �S + Æ) =
K + c(�S + Æ) +

R �S��s

0
c(�S + Æ � t)U(dt)

U(�S � �s)
:

Since c(�S + Æ) = c(s�) = min
S

c(S), and c decreases on (�1; s
�], it follows

that the former expression is smaller than

K + c(�S) +
R �S��s

0
c(�S � t)U(dt)

U(�S � �s)
= C(�s; �S);

in conclusion, C(�s+ Æ; �S + Æ) < C(�s; �S), which is a contradiction with the

optimality of the policy (�s; �S), proving that �S > s
�. Suppose now that

�s > s
�, then there exists a Æ > 0 such that �s � Æ = s

�. By a similar

argument as before we obtain that C(�s � Æ; �S � Æ) < C(�s; �S), which is a

contradiction, concluding thus s� > �s.

If (�s; �S) is an optimal policy and the inequality in relation (3.3) holds,

then

c(s) < min
S>s�

C(s; S) � C(s; �S);

and this implies by Lemma 2.1, (2.6), that �s < s < s
�. Since c is non

increasing, we obtain that relation (3.3), i.e.,

c(�s) = C(�s; �S) � min
S>s�

C(s; S) < c(s)

implies s < �s.

8 Optimal continuous order quantity (s; S) policies

One can also derive bounds for the optimal cost, which will generate an

upper bound for the optimal order-up-to level. This upper bound is tighter

than the one presented by Zheng and Federgruen(1991, Lemma 2).

Lemma 3.2. Let C� denote the optimal cost achieved with the optimal pol-

icy (�s; �S), that is,

C
� = C(�s; �S) = min

s;S

C(s; S):

The following inequality holds:

C
�
� K(1� FY (�S � �s)) + c(�S):(3.4)

This generates an upper bound S
u := supfS > s

� : C� � K(1 � FY (S �

�s)) + c(S)g for the optimal order-up-to level.

Proof. For any function f , de�ne the shift operator �s; s 2 IR as �sf(x) :=

f(s+ x) for all x, and de�ne �C as

�C(x) := K + (�sc � U)(x):

Straightforward calculation of �C � FY yields

�C(x) = �sc(x) +K(1� FY (x)) + (�C � FY)(x);

hence the cost function C(s; S) can be written in terms of �C, and

C(s; S) =
�C(S � s)

U(S � s)
=
c(S) +K(1� FY (S � s)) + (�C � FY)(S � s)

U(S � s)
:

Since C� is the optimal cost, obviously C
�
� C(s; S) for all s; S, thus

C
�
U(S� t�s) � C(s; S� t)U(S� t�s) = �C(S� t�s), for all 0 � t � S�s.

This implies that

C(s; S) �
c(S) +K(1� FY (S � s)) + ((C�U) � FY)(S � s)

U(S � s)
;

and the last term is equal to

C
� +

c(S) +K(1� FY (S � s))� C
�

U(S � s)
:

Em}oke B�azsa and Peter den Iseger 9

This yields in particular that

0 �
c(�S) +K(1� FY (�S � �s))� C

�

U(�S � �s)
;

which implies obviously the conclusion of the lemma.

Remark 3.3. Suppose that (�s; �S) is the optimal policy. �s is optimal if and

only if C(�s; �S) = c(�s) (cf. Lemma 2.1). Substituting this into relation (3.4)

(in Lemma 3.2) we obtain:

c(�s) � K(1� FY (�S � �s)) + c(�S):

The derivative of the cost function C(s; S) with respect to S is given by

CS(s; S) = h(s; S) � Cs(s; S);(3.5)

where Cs(s; S) is given by relation (2.8), and h(s; S) is given by

h(s; S) :=

R
S�s

0
cS(S � t)U(dt)

U(S � s)
:(3.6)

The higher order derivatives of h yield the higher order derivatives of the

cost function C, and the former are given by

hs(s; S) = (h(s; S)� cs(s))
m(S � s)

U(S � s)
;(3.7)

hS(s; S) = �hs(s; S) +
(s; S);(3.8)

where
 is given by

(s; S) :=

R
S�s

0
cSS(S � t)U(dt)

U(S � s)
+ (cS(s

�+)� cS(s
��))

m(S � s
�)

U(S � s)
:(3.9)

Assumption 3.4. We assume in the rest of the paper that c is convex, such

that relation (2.4) holds and cs(s) � 0 for all s > s
�.

Note, that c is not necessarily strictly convex.

Lemma 3.5. The derivative of the function h(s; S) w.r.t. S is given by

relation (3.8). Moreover, the function
(s; S), de�ned by relation (3.9), is

positive for every s � s
�
� S.

10 Optimal continuous order quantity (s; S) policies

Proof. Consider now the decomposition of h(s; S):

h(s; S) =

Z (S�s�)�

0�

cS(S � t)
U(dt)

U(S � s)
+

Z
S�s

(S�s�)+
cS(S � t)

U(dt)

U(S � s)
;

and take the derivative of the two terms with respect to S. The expression for

hS results immediately. We consider now two cases: when cs is continuous

in s� and when cs is not continuous in s
�.

If cs is continuous in s
� then, since cs(s) < 0 for s < s

� and cs(s) > 0 for

s > s
�, it is not possible that css(s) = 0 in a neighborhood of s�. This yields

that
(s; S) > 0 and the term

(cS(s
�+)� cS(s

��))
m(S � s

�)

U(S � s)
= 0:

If, on the other hand, cs is not continuous in s
�, then we obtain

(cS(s
�+)� cS(s

��))
m(S � s

�)

U(S � s)
> 0;

since s�� < s
� and cs(s) < 0 for all s < s

�, while s�+ > s
� and cs(s) � 0 for

all s < s
�. This yields again that
(s; S) > 0.

Lemma 3.6. The function h(s; S) is increasing in s.

Proof. Let's decompose the expression (3.6) in the following way:

h(s; S) =

Z (S�s�)�

0�

cS(S � t)
U(dt)

U(S � s)
+

Z
S�s

(S�s�)+
cS(S � t)

U(dt)

U(S � s)
:

(3.10)

Since cS is a non decreasing function (c is convex), the previous term is

greater or equal than

cS(s
�)
U(S � s

�)

U(S � s)
+ cS(s)

U(S � s)� U(S � s
�)

U(S � s)
> cS(s);

having cS(s) < 0 and cS(s
�) � 0. Summarizing these relations yields that

for all s < s
� and all S

h(s; S) > cs(s):(3.11)

Em}oke B�azsa and Peter den Iseger 11

This together with (3.7) implies immediately that

hs(s; S) > 0;(3.12)

that is, h is increasing with respect to s.

While the marginal cost relation provides the iterations for the optimal s,

�nding each time a stationary point for a �xed S, we need to solve now

CS(s; S) = 0. Considering the form of CS (see relation (3.5)), this does not

promise an eÆcient search; instead we can make use of the following remark.

Remark 3.7. If for a �xed order-up-to level S0 the reorder level s0 repre-

sents a local minimum for C(s; S), then h(s0; S0) = 0 if and only if S0 is a

stationary point for C(s; S).

4. A fast algorithm for the continuous case

4.1. Looking for the global minimum. Consider the following optimal-

ity and pseudo-optimality equations (see relation (2.5) and Remark 3.7)

C(s; S) = c(s) and(4.1)

h(s; S) = 0;(4.2)

and de�ne �(S) and (S) respectively:

�(S) := f� 2 IR : C(�; S) = c(�)g;(4.3)

 (S) := f 2 IR : h(; S) = 0g:(4.4)

Since (4.1) has a unique solution for every S (see Lemma 2.1) � is a well

de�ned function. Consider now an arbitrarily �xed S0. Since h(s
�
; S0) > 0,

while h(�1; S0) < 0, the equation h(s; S0) = 0 certainly has a solution in

(�1; s
�]. Knowing that hs(s; S0) > 0 (cf. Lemma 3.6), we can conclude

that this solution is unique. Hence, is also a well de�ned function. Now,

if equations (4.1) and (4.2) are simultaneously satis�ed for a pair (s0; S0),

then this point is a stationary point for C. By the de�nition of � and , for

12 Optimal continuous order quantity (s; S) policies

this stationary point �(S0) = (S0), thus an intersection point of the two

functions. But can we possibly �nd every intersection point of � and , and

at what cost (complexity)? Which of these intersection points represent a

local minimum for the total cost, and how can we �lter them? This section

deals with these questions.

Taking derivatives in relations (4.1) and (4.2) with respect to S, yields

the �rst order derivatives of � and :

�S(S) =
CS(�(S); S)

c�(�(S))
:

Relations (3.5), (4.1) and Lemma 2.1 imply together that CS(�(S); S) =

h(�(S); S), yielding

�S(S) =
h(�(S); S)

c�(�(S))
:(4.5)

Similarly,

 S(S) =
�hS((S); S)

h ((S); S)
:

By relation (3.8) this becomes

 S(S) = 1�

((S); S)

h ((S); S)
:(4.6)

Remark 4.1. The function � has a stationary point in the intersection

points with , that is, if �(S0) = (S0) then �S(S0) = 0, and these are the

only stationary points for �.

What do these �rst order derivatives tell us about � and ? The answer

is summarized in the following lemma.

Lemma 4.2.

�S(S) < 1 and S(S) < 1;(4.7)

that is, neither of the functions increases steeper than the bisector of the

�rst quarter. Moreover, �(S) < s
�, �S(s

�) > 0, (s�) = s
�.

Em}oke B�azsa and Peter den Iseger 13

Proof. Relation (3.11) and cs(s) < 0 for all s < s
� imply together that

h(�(S); S)=c�(�(S)) < 1, that is �S(S) < 1 (cf. (4.5)). The strict positivity

of
(s; S) (cf. Lemma 3.5) and hs(s; S) (cf. Lemma 3.6) yield trivially that

 S(S) < 1. The last statement of the Lemma is trivial, and can be veri�ed

by direct computations.

The second order derivative �SS(S) of � is given by

h�(�(S); S)�S(S) + hS(�(S); S)

c�(�(S))
�
h(�(S); S)c��(�(S))�S(S)

c2
�
(�(S))

:

We already know by Remark 4.1 that � has a local minimum or maximum

in the intersection points with . The second order derivative gives more

information, namely, if �(S0) = (S0), then

�SS(S0) =
hS((S0); S0)

c�((S0))
;

since �S(S0) = 0. Multiplying by h ((S0); S0)=h ((S0); S0) and using

expression (3.7) yields

�SS(S0) = S(S0)
m(S0 � (S0))

U(S0 � (S0))
:(4.8)

In conclusion, we have two types of intersection points: the �rst is such that

 is decreasing and it intersects � in a local maximum, the second type

is when is increasing and it meets � in a local minimum (see Figure 1).

This gives us a lot of information about the behaviour of the two functions.

Before the �rst type of intersection points the function is decreasing, and

since the intersection point itself is a maximum point for �, it will increase

until the intersection and it decreases afterwards. Let us summarize this in

the following proposition.

Proposition 4.3. �(S) > (S) if and only if �S(S) < 0, while �(S) <

 (S) if and only if �S(S) > 0. Moreover, if S(S0) < 0 and �(S0) = (S0)

then �SS(S0) < 0 and if S(S0) > 0 and �(S0) = (S0) then �SS(S0) > 0.

14 Optimal continuous order quantity (s; S) policies

Proof. Suppose that �(S) > (S). Then, knowing that h(s; S) is increasing

in s (see Lemma 3.6) h(�(S); S) > h((S); S) = 0. Furthermore, since

cs(s) < 0 (s < s
�), we obtain

�S(S) =
h(�(S); S)

c�(�(S))
< 0:

If, in turn, we suppose that �S(S) < 0, this implies immediately by (4.5)

that h(�(S); S) > 0. By the de�nition of , h((S); S) = 0, and knowing

that h is increasing in its �rst variable, these statements imply together that

�(S) > (S).

When �(S) < (S), using the same reasoning as before, we obtain

�S(S) > 0. The remainder of the Proposition was proven by relation

(4.8).

It only remains to check now which of these intersection points of � and

 represent a local minimum for the total cost function C. Suppose that

(s0; S0) is a stationary point for C(s; S) (obviously s0 = �(S0) = (S0)),

then the Hessian of C in (s0; S0) is

H(s0; S0) =

2
4 �cs(s0)

m(S0�s0)

U(S0�s0)
0

0 cs(s0)
m(S0�s0)

U(S0�s0)
+
(s0; S0)

3
5 ;(4.9)

where
 was de�ned by relation (3.9). In view of the de�nitions of S(S)

(see relation (4.6)) and
, the Hessian can be written in the form

H(s0; S0) = �cs(s0)
m(S0 � s0)

U(S0 � s0)

2
4 1 0

0 � S(S0)

3
5 :(4.10)

Indeed, this form yields us immediately the answer for the question: which

intersection points of � and represent a local minimum for C?

Proposition 4.4. If (s0; S0) is a stationary point for C(s; S) such that

 S(S0) < 0 and �S(S0) = 0, that is, S0 is a local maximum for �, then

(s0; S0) is a local minimum for C(s; S).

Em}oke B�azsa and Peter den Iseger 15

4.2. The algorithm. What is left to do now is to de�ne a search algorithm

which �nds all the intersection points of � and . For this purpose Lemma

4.2 and Proposition 4.3 will be of great help. Indeed, Lemma 4.2 asserts that

neither � nor increases steeper than 45 degrees. Assume now, that having

taken an arbitrary S0, �(S0) < (S0). We know then from Proposition 4.3

that �(S) is increasing. Let us take in this point a secant of 45 degrees.

 S(S) < 1 guarantees that this line will intersect in strictly one point,

say S1. Furthermore �S(S) < 1 guarantees that the 45 degree secant will

not intersect � in any other point than S0. Repeat now the previous step

for �(S1), obtaining S2, and so on. We want to prove that fSk : k � 1g is

converging monotonically to S�, where S� := inffS > S0 : �(S) = (S)g.

When �(S0) > (S0) we proceed in exactly the same way and then the

algorithm will converge monotonically to the left from the starting point.

Lemma 4.5. Consider s and S �xed. The function �(t) := C(s+ t; S + t)

is strictly convex in t. Moreover, t0 is optimal for � if and only if h(s +

t0; S + t0) = 0.

Proof. The optimality condition is that the derivative of � w.r.t. t has to

be 0; that is, Cs(s+ t0; S + t0) + CS(s+ t0; S + t0) = h(s+ t0; S + t0) = 0.

It only remains to check if the second derivative is positive:

�tt(t) = hs(s+ t; S + t) + hS(s+ t; S + t) =
(s+ t; S + t) > 0;

where
 is given by (3.9).

Let us summarize the results we found so far in a subroutine (which �nds a

local minimum for C) and prove convergence formally.

Subroutine: LM(S0)

1. input S0, k := 0;

2. calculate s0 such that C(s0; S0) = c(s0);

repeat 3. tk := argmint C(sk + t; Sk + t);

4. Sk+1 := Sk + tk;

16 Optimal continuous order quantity (s; S) policies

5. calculate sk+1 such that C(sk+1; Sk+1) = c(sk+1);

6. k := k + 1

until tk = 0.

7. LM := Sk;

Theorem 4.6. If S0 is the starting point and the previously described sub-

routine converges monotonically to S�, then the cost reaches a (local) min-

imum in S
�. Moreover, the subroutine always �nds the closest2 minimum

point to S0, such that, if S� < S0 then there is no other stationary point in

[S�; S0] and if S� > S0 then there is no other stationary point in [S0; S
�].

Proof. Suppose that (Sk) > �(Sk). Since S(S) < 1 the 45 degree secant

(�(Sk) + t; Sk + t); t � 0 intersects (S) strictly in one point, Sk+1. That

is,

�t(t)jt=0 = Ct(�(Sk) + t; Sk + t)jt=0 = h(�(Sk); Sk) < 0;

since h((Sk); Sk) = 0, (Sk) > �(Sk) and h(s; S) is increasing in s. Hence

� is decreasing from �(Sk) and since it is strictly convex it has strictly one

minimum, say Sk+1 (the intersection point, cf. Lemma 4.5), such that

Sk+1 > Sk:(4.11)

The fact that �S(S) < 1 and S(S) < 1 implies for all Sk < S < Sk+1 that

�(S) < �(Sk) + (S � Sk);(4.12)

 (S) > (Sk+1) + (S � Sk+1):(4.13)

Hence, for every Sk � S < Sk+1, relations (4.12) and (4.13) imply together

that

�(S) < �(Sk) + (Sk+1 � Sk) + (S � Sk+1) = (Sk+1) + (S � Sk+1) < (S):

2By "closest minimum" we understand the following: if the starting point is between

two stationary points of �, then the subroutine will �nd the stationary point which is a

maximum point for �, that is, a minimum point for C; it is not necessarily the closest in

norm (distance).

Em}oke B�azsa and Peter den Iseger 17

In conclusion, �(S) < (S) for all Sk � S < Sk+1, that is, there are no

stationary points for C in (Sk; Sk+1). Since Sk is an increasing sequence

(cf. relation (4.11)) and it is bounded by the intersection point of the two

functions �(S) = (S)3, Sk is convergent, hence the subroutine converges

monotonically, too, and we have C(sk+1; Sk+1) < C(sk; Sk) for all k � 0.

In the case when (Sk) < �(Sk) we proceed exactly in the same way,

obtaining a decreasing sequence Sk+1 < Sk. In conclusion, the subroutine

always converges to a stationary point Sn such that S(Sn) < 0. In view

of Proposition 4.4 this implies that the subroutine always converges to a

(local) minimum.

Remark 4.7. C(s; S) = c(s) and h(s; S) = 0 are nonlinear equations, in

fact, the �rst means to compute s = �(S), while the second is to compute s =

 (S). In Section 4.2.1 a detailed explanation is given about the computation

of these two functions. Yet, it is important to remark now how we achieve

that the local optimum �S is not overshot, thus insuring that the iterations are

monotone: When the iterations begin at S0 < �S (thus the sequence increases

monotonically to the right), we replace Step 5 with 0 � C(s; S)�c(s) � " and

the stopping condition with 0 � tk � ", for any " > 0 (obviously, h(s; S) <

0). Analogously, when S0 > �S (thus the sequence decreases monotonically

to the left), we replace Step 5 with �" � C(s; S)�c(s) � 0 and the stopping

condition with �" � tk � 0, for any " > 0.

The core of the algorithm is the subroutine LM which �nds the local min-

imum, but it is equally important to de�ne a search which �nds the global

optimum in a fast and eÆcient way. For this purpose the next lemma will

be of great help, it will assure that the algorithm is fast and eÆcient.

Lemma 4.8. The global minimum of C(s; S), C� = C(�s; �S) is reached ex-

actly in the global maximum of the function �, �(�S) = �s.

3It is also easy to check that this upper bound is at the same time the lowest upper

bound of the sequence

18 Optimal continuous order quantity (s; S) policies

Proof. The proof is very simple and it is based on Proposition 4.4 (any local

minimum of C is reached in a local maximum of �) and the assumption

that c is non increasing on (�1; s
�]. C� = C(�s; �S) is the global minimum,

which means that �s is a minimum, that is, C(�s; �S) = c(�s) (cf. Lemma 2.1).

Moreover,

c(�(�S)) = c(�s) = C(�s; �S) < C(ŝ; Ŝ) = c(ŝ) = c(�(Ŝ))

for any other local minimum (ŝ; Ŝ). Since c is non increasing, it follows that

�(�S) > �(Ŝ), for all Ŝ local maximum for � (cf. Proposition 4.4).

Now we are ready to proceed with the description of the algorithm. Before

providing a detailed description we give the general idea behind the algo-

rithm in three major steps. Step 0: It is trivial to start the search at the

lower bound s� by running the subroutine LM(s�), obtaining S0 := LM(s�),

with (�(S0); S0) representing a local minimum for C. (Since (s�) = s
�
>

�(s�), trivially S0 > s
�.) The diÆculty arises at this point. Since the sub-

routine always �nds the closest stationary point, we have to step away "far

enough" otherwise the subroutine would �nd back S0 again and again. The

upper bound Su (cf. Lemma 3.2) yields the solution: Step 1: restart the

search at the upper bound, �nding an optimum S1 such that: a) �(S1) >

�(S0) (that is C(�(S1); S1) < C(�(S0); S0), cf. Lemma 4.8) and b) �(S1) >

�(S) for all S 2 (S1; S
u]. Step 2: With the help of the new maximum, �(S1)

we can restart the search in S0, obtaining S2, such that �(S2) > �(S1). We

construct thus iterations from both of the ends of the feasibility interval

of the form [Sk�1; Sk] (Sk�1; Sk local optima's) until the two ends meet,

reducing the interval to 0. The last found optima is the optimal policy.

There's one more question we still have to answer before giving the al-

gorithm, and that is: how to �nd the closest maximum for �, which is

bigger than the previously found maximum. That is, �nd the point where �

increases to the level of the last maximum (say, Su
k
and S

l

k
) and in that

Em}oke B�azsa and Peter den Iseger 19

point restart the subroutine LM . In Step 1 we proceed in the follow-

ing way: Let the feasibility interval be (Sk�1; Sk�2) at this moment, with

ŝk�1 := �(Sk�1) > �(Sk�2), the last found maxima for �. The aim is to �nd

the level crossing point:

S
u

k
:= supfS < Sk�2 : �(S) = ŝk�1g:(4.14)

Due to �S(S) � 1 (cf. Lemma 4.2), the 45 degree secant in the point

(Sk�2; ŝk�1) intersects � in strictly one point, say S1, with S1
< Sk�2 and

�(S1) � ŝk�1. Taking this secant repeatedly in the points (Sn; ŝk�1); : : :

we obtain a decreasing sequence : : : < S
n
< : : : < S

1, which converges to

S
u

k
. (Later we start the subroutine LM(Su

k
) in this point, obtaining the

new maxima ŝk > ŝk�1 with ŝk := �(Sk), and the new feasibility interval

[Sk�1; Sk].) Let us summarize this in the subroutine:

Subroutine: ISU(Sk�2; ŝk�1)

1. n := 0; S0 := Sk�2; t0 = 1;

while tn > " do begin

2. n := n+ 1;

3. tn is the solution of 0 � C(ŝk�1 � t; Sn�1 � t)� c(ŝk�1 � t) � ";

4. Sn := Sn � tn;

end.

5. ISU := Sn;

Step 2 works similarly, with the di�erence that the level crossing point is

given by

S
l

k
:= inffS > Sk�1 : �(S) = ŝkg;

thus we obtain an increasing sequence fSng, (starting from Sk�1), such that

we take secants �rst in the point (Sk�1; �(Sk�1), which intersects the line

ŝk in S
1. �S(S) < 1 insures that �(S1) � ŝk. Taking this secant repeatedly

in the points (Sn; �(Sn)); : : : we obtain an increasing sequence S1
< : : : <

S
n
< : : : , which converges to Sl

k
. (Start then the subroutine LM(Sl

k
) in this

20 Optimal continuous order quantity (s; S) policies

point, obtaining the new maxima ŝk+1 > ŝk with ŝk+1 := �(Sk+1), and the

new feasibility interval [Sk+1; Sk]). The subroutine is given as follows:

Subroutine: ISL(Sk�1; ŝk)

1. n := 0; S0 := Sk�1; Æ0 := 1;

while Æn > " do begin

2. n := n+ 1;

3. Æn := ŝk � s, where s is the solution of 0 � C(s; Sn�1)� c(s) � ";

4. Sn := Sn�1 + Æn;

end.

5. ISL := Sn;

Having established these subroutines, the algorithm itself is simple. The

search stops when the feasibility interval reduces to zero.

The algorithm:

1. (input "); S0 := LM(s�); ŝ0 := �(S0); c0 := c(ŝ0);

2. while c0 � c(S0 +�) do � := 2 ��;

S1 := S0 +�;

if �(S1) < ŝ0 then RP := ISU(S1); S1 := LM(RP);

ŝ1 := �(S1);

k := 1;

3. while Sk � Sk�1 > " do begin

4. RP := ISL(Sk�1; ŝk);

5. Sk+1 := LM(RP); ŝk+1 := �(Sk+1);

6. RP := ISU(Sk; ŝk+1);

7. Sk+2 := LM(RP); ŝk+2 := �(Sk+2);

8. k := k + 2;

end;

9. S� := Sk; s
� := ŝk;

The algorithm always converges to the global minimum of C, the optimal

policy is (s�; S�). An example for the iterations made, using the functions

� and , is given in �gure 1. The parameters are, as follows: L = 1,

Em}oke B�azsa and Peter den Iseger 21

� = 1, h = 1, p = 10, K = 1. The individual demands are distributed with

a Gamma distribution, with parameters � = � = 200. In this case, the

2 2.5 3 3.5 4 4.5 5 5.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2
3

4

1

Figure 1. Some iterations of the algorithm

global optimum is found in four iterations, numbered on the graph as they

follow. After having found the �rst local maximum of �, S0, of value (1),

the algorithm �nds the upper bound for the optimal order-up-to level, S1, of

function value (2). Since (2) is larger than (1), (2) automatically de�nes the

new relevance level. The next step is starting ISL(S0; (2)), obtaining S3, the

level crossing point, (3). LM(S3) �nds (4), which turns out to be the global

maximum for �, since ISU(S2; (4)) �nds back the same point, reducing the

feasibility interval to zero. The optimal policy is (1:6754; 3:0503).

Remark 4.9. Steps 5 and 7 require the computation of ŝk := �(Sk), where

�(Sk) is calculated for instance with bisection (see Section 4.2.1). To insure

that that we do not overshoot the global minimum, just as we did for the sake

22 Optimal continuous order quantity (s; S) policies

of monotonicity in Remark 4.7, we approximate ŝk := �(Sk) such that �" �

C(s; Sk) � c(s) � 0, for any " > 0. This will ensure that ŝk � ŝ
�, for every

k � 1, where ŝ� represents the global maximum of �. This means in fact,

that the algorithm will never overshoot the global minimum of C (see Lemma

4.8), that is, for the found optimal policy C(s�; S�) � min0�s<SC(s; S).

4.2.1. Calculating �(S) and (S). We owe the reader one more explanation,

that is, how we solve the nonlinear equations C(s; S0) = c(s) and h(s; S0) =

0 (which is, in fact, calculating s = �(S0) and s = (S0)) for a �xed S0.

For most of the software packages it is standard to solve equations which

have only got a single root (cf. Lemma 2.1 this is the case for �(S), and

cf. Lemma 3.6 for (S)). However, we propose an approximation, which is

easy to evaluate, so much the more for instance in Step 7 the precision of

the value of � does not in
uence the precision of the found local maximum

in Step 8, thus it does not in
uence the precision of the optimal policy. The

precision of the optimal policy is only important in the last evaluation of

the subroutine LM . Since we can choose any " > 0, any precision can be

attained. We describe now a bisection method because it is more accessible,

although there are faster methods, such as the Newton method.

Subroutine PHI(S):

l := ŝk; s1 := ŝk � l=2; i := 0;

while l > " do begin

l := l=2; i := i+ 1;

If C(si; S) < c(si)

then si+1 := si + l=2;

else si+1 := si � l=2;

end fwhileg

We know from Lemma 2.1, relation (2.6) that C(s; S) > c(s) if and only

if s > �s (where C(�s; S) = c(�s)). The rest of the routine speaks for itself.

The subroutine PSI(S) is similar to PHI(S), except that in the if case the

condition is h(si; S) < 0.

Em}oke B�azsa and Peter den Iseger 23

4.2.2. Comparisons with the Federgruen-Zipkin algorithm. Although our ap-

proach is di�erent from that of Federgruen and Zipkin (1985), there are some

common ideas. Let us go through the di�erences and common idea's step

by step.

0. The bounds for the optimal policy are tighter in the present paper.

1. We also need to compute the cost function C(s; S), that is, gR: We �rst

calculate it's Laplace transform, which is a closed form expression, due to

its convolution structure (cf. B�azsa and Iseger (2000)). Then we invert the

Laplace transform, obtaining a very accurate approximation for C(s; S) (the

approximation is that of a machine precision, cf. Iseger (2000)).

2(a). The approach of the search for an optimal order up to level S is

completely di�erent. Federgruen and Zipkin are minimizing the relative

cost vR(y) for a �xed reorder point s. Since the cost function is not convex

w.r.t. S, this can be a diÆcult problem. We exploit the very convenient

properties of the functions �(S) and (S), while always obtaining a policy

improvement.

2(b) Finding an optimal s for a �xed S. In (ii) of Federgruen and Zipkin,

the equation G(x) = gR is in fact C(s; S) = c(s), that is, calculating �(S).

We proved that a unique solution exists and we also gave a simple procedure

for �nding this root. The cases (i) and (ii) can be interpreted as the two

conditions for being under or below the graph of the function �(S), exactly

what we also exploit in our procedure.

4.2.3. Speed of convergence. The algorithm basically consists of repeated

evaluations of the subroutinesLM , ISU , ISL, PHI, PSI, and the functions

C(s; S) and c(s). The evaluations of the functions C(s; S) and c(s) are done

with a Laplace transform inversion method (cf. Iseger(2000)): due to their

convolution structure, their Laplace transform is easy to calculate, which

is then inverted. The results are accurate (up to machine precision) and

they are obtained in fractions of time. The subroutines PHI and PSI use

a simple bisection or Newton method for �nding the unique solution of a

24 Optimal continuous order quantity (s; S) policies

nonlinear equation. The results are accurate up to an " precision, for any

" > 0. However, it pays o� not to choose " very small, since it does not e�ect

the convergence of the algorithm to the global minimum, while a larger "

can make the algorithm even faster. The three subroutines, LM , ISU , and

ISL have the same speed of convergence, since in a neighborhood of the

limit point they are very similar. Denoting with ln the distance from the

limit point at the nth iteration, we obtain for the di�erent subroutines the

following expressions for ln+1:

� subroutine LM : ln+1 = (1=(1 � S(Ŝk)))ln, with S(Ŝk) < 0.

� subroutine ISU : ln+1 = (1=(1 � �S(RP)))ln, with �S(RP) < 0.

� subroutine ISL: ln+1 = (1� �S(RP))ln, with �S(RP) > 0,

where Ŝk is the intersection point of � and , and RP is the point where �

crosses the actual relevance level. This means that the subroutines converge

linearly, such that ln+1 = �ln, with 0 < � < 1. It is also important to remark

that if N is the number of the local optimums (N is always �nite), then the

algorithm will execute a local search at most N times. Furthermore, from

the speed of convergence expressions we can deduce the following relations:

LM : If the subroutine goes from to the left to the right we have: ln+1� ln =

 S(Ŝk)ln+1 and Sn+1 � Sn = ln � ln+1 imply, that taking a precision

" > 0 yields " = S(Ŝk)ln+1. The Taylor expansion of � in the point

Ŝk yields �(Sn+1) � �(Ŝk) = 1=2�SS(Ŝk)l
2
n+1, since �S(Ŝk) = 0 and

ln+1 = Ŝk � Sn+1. Substituting this into the speed of convergence

expression, we obtain for the convergence of the � values to the local

maximum, that

�(Sn+1)� �(Ŝk) =
"
2
�SS(Ŝk)

2 2
S
(Ŝk)

;(4.15)

where �SS(Ŝk) < 0. When the subroutine converges from the right to

the left we obtain the same result.

Em}oke B�azsa and Peter den Iseger 25

ISU : ln+1 � ln = �S(RP)ln+1 = �(Sn+1) � �(RP) (�S(RP) < 0), that is,

�(RP) � �(Sn+1) = ", for an Sn � Sn+1 = ln � ln+1 = " step size

(8" > 0).

ISL: ln � ln+1 = �S(RP)ln (0 < �S(RP) < 1), that is, ln � ln+1 =

(�S(RP)=(1��S(RP)))ln+1. Having �S(RP)ln+1 = �(RP)��(Sn+1)

and Sn+1 � Sn = ln � ln+1, we obtain for any " > 0 that

�(RP)� �(Sn+1) = "(1 � �S(RP));

with 0 < �S(RP) < 1.

Remark 4.10. With regard to the speed of convergence of the subroutines

ISU and ISL, the reader might wonder what happens at the last iteration of

the algorithm, when the feasibility interval reduces to zero, yielding �S(S) =

0 at the last iterations. In particular, consider the case when (Sk; ŝk), the

global maximum is found, such that Sk < Sk�1 (obviously, ŝk�1 < ŝk). At

this instance the feasibility interval is (Sk; Sk�1), jSk�Sk�1j > ". At the next

step, ISU(Sk�1; ŝk) should �nd back Sk+1 = Sk, yielding jSk+1 � Skj < ".

Observe, that in a neighborhood of Sk �S(Sn) = 0, yielding ln+1 = ln

(check the expression for speed of convergence). However, this also means

that Sn+1 = Sn, that is, the subroutine ISU stops. Now, the subroutine

LM is run in this point, but its speed of convergence depends on S , having

 S(S) << 0 in a neighborhood of Sk.

References

B�azsa, E. and Iseger, den P. 2000. Single item inventory models: a

time and event averages approach. Submitted to OR.

Clark, A. and Scarf, H. 1960. Optimal policies for a multi-echelon in-

ventory problem. Management Science, 6(475- 490).

Eppen, G. and Schrage, E. 1981. Centralized order policies in a multi-

warehouse system with lead times and random demand. In Multilevel pro-

duction/inventory control systems: Theory and practice, ed. L. Schwarz.

26 Optimal continuous order quantity (s; S) policies

North-Holland, Amsterdam.

Federgruen, A. and Zipkin, P. 1984. Computational issues in an in�nite

horizon, multi-echelon inventory model. Operation Research, 32(818-836).

Federgruen, A. and Zipkin, P. 1985. Computing optimal (s; S) policies

in inventory models with continuous demands. Advances in Applied Prob-

abilities, 17(424-442).

Iseger, den P.W. 2001 . A new method for inverting Laplace transforms.

In preparation.

Rosling, K. 1989. Optimal inventory policies for assembly systems under

random demands. Operations research, 37(565-579).

Veinott, F. and Wagner, H. 1965. Computing optimal (s; S) inventory

policies. Management Science, 11(525-552).

Zheng, YS. and Federgruen, A. 1991. Finding optimal (s; S) policies is

about as simple as evaluating a single policy. Operations Research, 39(654-

665).

