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Abstract

In a discrete model, the predicted probabilities of a particular event
can be matched to the observed (0, 1) outcomes and this will give rise
to a measure of fit for that event. Previous results for the binomial
model are applied to multinomial models. In these models the measure
of fit will vary between the various events, indicating that the model
performs better for some than for others. In addition to these differ-
ential measures of fit for each separate event a single overall measure
is constructed for the model as a whole.
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1 Introduction and summary

A multinomial discrete choice model describes the occurrence of S alternative
states or events. An assessment of the goodness of fit for one event, considered
in isolation, is obtained by matching predicted and observed outcomes, where
the former are probabilities and the observations are 0, 1 variables. This can
be done in various ways, some of which are listed in the survey by Menard
(2000). The issue was treated in an earlier paper (Cramer (1999)) for binary
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models, and the argument that led to the adoption of A (which comes close
to R?) as a measure of fit is repeated in Section 2. In a binary model this
statistic (like other measures of fit) will have the same value for an event and
its complement. With more than two states, however, the results for the S
alternatives generally differ. This indicates that the model fits some events
better than others, and thus suggests where there is room for improvement.
In addition to these differential measures of fit, a single overall measure for
the model as a whole is in order. These aspects of the multinomial case are
the subject of the present paper. The favoured measure for a single event
turns out to be asymptotically identical (and hence a close approximation) to
R?, the classical coefficient of determination, for a OLS regression of discrete
outcomes on the corresponding probabilities. Its use in discrete models is
not novel. To my knowledge, however, the derivation and supporting theory
of the 1999 paper was new, and it is this that is now generalized to the
multinomial case.

The argument makes use of asymptotic properties of the predicted prob-
abilities that are established in another companion paper (Cramer (2000)).
Whether these hold approximately for a finite sample is easily verified; they
usually do. With this reservation, the present results apply to any well be-
haved probabilistic model of a discrete outcome, and not just to the logistic
regressions that serve as illustrations. But as the asymptotic properties have
been derived for random samples from a given population, they are more
appropriate to survey data from the social sciences and epidemiology than
to controlled experiments.

Section 2 recalls the main points from Cramer (1999), Section 3 addresses
the general case of S alternatives, considered jointly, and Section 4 gives two
illustrations from multinomial logit analyses.

2 Closeness of fit for a single event

A multinomial model determines the conditional probabilities of S discrete
events at observation ¢ as a function of known regressor variables x;. In this
section we consider a single event or state s in isolation, and temporarily omit
the suffix s. Y; = 1 denotes the event, and the model gives its probability



Consistent parameter estimates (like the standard Maximum Likelihood
estimates) are obtained from a random sample of size n from a given popu-
lation, and these yield predicted probabilities

P, = P(z;,0).

The sample outcomes and predicted probabilities are arranged in vectors y
and p. Since E(y) = p it is natural to define crude residuals

e=y—p.

These residuals share two properties of the ordinary least squares residuals of
linear regression, if only asymptotically. The first is the zero mean property

Te/n 250, (1)
where 2 denotes a vector of ones. In terms of p and y this implies

Tp sy, (2)
The second property is orthogonality

ple/n 2 0. (3)

For samples of reasonable size these asymptotic properties will hold ap-
proximately. The first leads from (2) to the equality of means: the mean
sample probability is (approximately) equal to the sample incidence or base
rate a,

p=1"p/n~"y/n=a. (4)

In the special case of a logit model this holds exactly. - Similarly, (3) leads
to the approximation

ple=p"(y—p) ~0. (5)

Since e has zero mean (if only approximately) it follows at once that e and
p are approximately uncorrelated. And (5) also implies

Py = pTp. (6)



A simple and direct way to assess the fit is to examine the estimated
probabilities of the observations with Y; = 1. The higher these probabili-
ties, the lower the probabilities of the other observations, since the overall
average is constrained by (4); and the better is the within-sample predictive
performance of the model. The mean of the probabilities for Y; = 1 is

Pt =ply/m, (7)

with ny = a.n the frequency of ¥; = 1. As in all measures of fit (beginning
with the R? of classic linear regression) we define two limiting cases for this
quantity and ascertain its actual position in the intervening interval. Here
the bottom line is the performance of the null model, with a single constant
as the sole regressor, or zero coefficients for all (other) regressor variables. In
this case the same constant probabilities apply to all observations, regardless
of the outcome Y;; in accordance with (4) these are equal to «, and so is the
minimum P*. The upper limit obtains for the near-perfect model with the
P, and hence P*, arbitrarily close to 1. The actual position of P+ can be

represented by writing it as a weighted average of these bounds with weights
Aand 1 — A 0< A< 1,

Pt =X+ (1-MNa, (8)
or
Pt —a

1—a

(9)

A thus indicates the position of P+ between a and 1 on a (0,1) scale.

There are several other equivalent expressions for A. A counterpart to
Pt is P~, the mean probability over the other observations, with Y; = 0; as
it turns out,

A=Pt— P,
so that A\ measures the discrimination of P; between observations with and

without the event under consideration.

By (3) P; and e; are asymptotically uncorrelated, and they will be nearly
so in samples of reasonable size. The sum of squares of Y; can therefore be
decomposed as

SS, ~ S5, + S8.. (10)



By (6), (7) and (8) SS, may be expressed in n, o and \; SSS, is equal to
na(l — a). Substituting these values we find

A~ SS,/SS, ~1— SS./SS,, (11)

so that ) is a close approximation of the R? of a linear regression of 4 and p.
This result depends essentially on the orthogonality of p and e, which follows
from the asymptotic properties (1) and (3).

The use of this R? as a measure of fit for discrete models has been sug-
gested before by Efron (1979), Maddala (1983, pp.38-39) and Agresti (1996,
p.129); as R%, ¢ it is the first on the list of Menard (2000). Most of these
authors justify the measure by mere analogy (if at all); Efron is an exception
in that he takes great trouble over the decomposition of the sum of squares
of y along the lines of (10). As he considers a more detailed decomposition
in several successive components he has recourse to a fairly special sample
design to ensure their orthogonality.

3 The multinomial case

In a multinomial model outcomes and probabilities are recorded in n x S
matrices Y and P with columns ys and ps. Upon adding the suffix s all
results of the preceding section apply to each event s considered separately.
The only exception is the generalization of (3); it turns out that the p, are
asymptotically uncorrelated with all residuals ey,

ple./n L0 Vs,t.
Hence
PTY ~ PTP, (12)

which goes further than (6); it implies symmetry of the matrix PTY which
has the sums of probabilities over observations with a given outcome as its
elements.

For each s, a separate As can be derived from the columns p, and y; in
the same manner as before; take ply,, a diagonal element of P"Y’, divide by
the frequency ns to obtain the mean probability P;", and find A4 as in (9),

Pl —a,
M= 13



This will give S values A, which reflect the fit for each separate state. As ng
and a4 are given constants from Y, the fitted model intervenes only via the
diagonal elements of PTY".

To assess the fit of the model as a whole we consider the mean predicted
probability of the observed outcome over all observations, that is

Pt =3 a,P;. (14)

Its minimum is again found by equating the P} to their null model values
as, and this gives Zozfi the upper limit is 1, as before, for a perfect model.
The actual position of PT between these bounds is given by the overall A, as
in (8),

Pr=X+(1-X))> ol (15)
As in (9) we have

- Pt—3a?

=—==3 1

A > a2 (16)
Upon rewriting and substituting (13) this gives

Y s p+ - Us s 1-—- s )\s

)\:Za( 04)_204( as) (17)

I-Ya2 Yoa(l—a,)

Thus ) is a weighted average of the state-specific \;, with the variances of
ys as weights. It varies between 0 and 1 in the same manner as the A, and
if the state-specific Ay happen to be equal the same value will hold for the
overall A. But A does not correspond to a coefficient of determination R? for
all n x S observations. By (11) it can be rewritten as

A3 (SSp)s D (SSy)s,

but the numerator and denominator are not squared deviations over all obser-
vations, for the separate terms S.S, and S.S, are sums of squared deviations
from the specific column means.

For S = 2 the multinomial model reduces to the binary case. It is easy to
see that in that case the same \ applies to the two columns and therefore to
the entire model. This is so because y1, y» and p;, ps both sum to 2. If S > 2
the columns of P and of Y also sum to 1, and this raises the question whether
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there are similar restrictions on the A\;. The answer is negative. The A\, are
correlated since the ys and p, are constrained, but there is no exact side
relation among them. The only special cases where one Ay can be deduced
from the S — 1 others are the two extremes of the null model and of a perfect
fit, because for s equal to 0 or to 1 all elements of the corresponding ps are
determined.

To see why there are restrictions for S = 2, but not for S > 2, we
recall that the A\ are derived from the diagonal elements of PTY. The
S x S elements of that matrix are subject to two constraints. First, by the
equality of means of (4) the column sums equal the sample frequencies ng;
this constitutes S restrictions. Second, the extended orthogonality condition
(12) implies symmetry of P”Y, or another 1/2 x S x (S — 1) restrictions.
There remain

L=1/2xSx(S—-1)

elements of PTY that can vary freely. For S = 2, L is 1, and a single A,
determines the entire matrix. But with S > 2 L equals or exceeds S, and
there is sufficient room for variation of the ;.

4 Two illustrations

Four types of Hepatitis

The first illustration is a multinomial logit analysis of four types of Hep-
atitis on the basis of a sample of 218 patients by Lesaffre and Albert (1989);
one notorious outlier detected by these authors has been removed (nr 136).
The data have been collected by Plomteux (1980). The regressors are four
types of enzymes. Table 1 gives a number of statistics.

The first thing is to check the approximations that are supposed to hold.
Since this is a logit analysis, the equality of the means is automatically
satisfied. As for orthogonality, the correlations between the ps and e; are
small, but not very small; but then this is not a large sample.



state: | PNC | AVH | PCH | ACH

040 | -.020 | -.025 | -.009
Tooe, | -004 | 038 | -.024 | -.000
-.062 | -.006 | .057 | .020
025 | -.024 | .002 | -.013
a, | 355 | 263 | 203 | .180
Pr | 746 | 875 | 717 | 536

As 607 | .830 | .845 | 434

Table 1. Statistics for the Hepatitis study

As for the results, the values of A\ are all very high: on the basis of
experience with binary analyses values of .4 and over indicate a strong re-
lationship, and .8 is exceptional. Although there is some variation between
the four types, the fit is quite good throughout, and this is reflected in the
overall A of (15) which is .640.

This is an example of an extraordinary good fit, almost uniformly so
across all states. It is therefore well suited for a demonstration of the regres-
sion diagnostics of Lesaffre and Albert.

Car ownership

The second illustration is a multinomial logit analysis of four classes of car
ownership on the basis of a sample survey of some 2800 Dutch households in
1980 that I have analysed elsewhere (Cramer (1991)). There are four classes
of car ownership status, viz.

none

one used car

one new car

more cars
and the regressors are the usual determinants like log of income, age, log of
family size, urban/rural habitat, and (less usual) a dummy for the presence
of a business car.



state: | none | used new | more
.006 | -.006 | -.004 | .007

Tpe, | --016 | .012 | .009 | -.013
-.015 | -.002 | .015 .003

.033 | -.003 | -.029 | .000

Qg 358 | 335 | .245 | .062
]55“‘ .67 429 313 180
As .325 141 .090 125

Table 2. Statistics for the analysis of car ownership

Table 2 gives the statistics. This is a fairly large sample and the correla-
tions of ps and e; show that the asymptotic properties of section 2 are closely

approximated.

The overall X is .187, which is fair; the analysis as a whole is satisfactory
but certainly not outstanding, and one should look for ways to improve the
model. The values of A\; vary considerably between states; the value of .35 for
non-owners is quite high, but .09 for new car ownership is pretty low. Often,
the smaller categories are predicted badly, since they pull little weight in the
likelihood function that is maximized; but new car ownership represents a
quarter of the sample. To improve the overall performance of the model one
should concentrate on factors that differentiate between new car ownership

and the other three states.
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