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Abstract

This paper provides a continuous record interpretation of the block local to unity asymptotics

proposed recently by Phillips, Moon and Xiao (2001). It also demonstrates that in the case of

homogeneous dynamics and a fixed number of blocks, the new asymptotic approximation coincides

with the conventional local to unity asymptotic approximation.

1 Introduction

Consider the first-order autoregressive model for an observed time series{yt, t = 0, 1, . . . , n}:

yt = ayt−1 + ut, t = 1, . . . , n, (1)

whereut is an i.i.d.(0, σ2) process. It is well known that the asymptotic properties of the least-squares

estimator̂a =
(∑n

t=1 y2
t−1

)−1 ∑n
t=1 yt−1yt are quite different for the three cases|a| < 1, a = 1 and

a > 1, corresponding to stationary, integrated and explosive processes, respectively, in terms of both

the speed of convergence and the shape of the limiting distribution of the normalized estimator. This

difference, and in particular the discontinuity of the asymptotic properties ata = 1, has motivated the

development oflocal to unityasymptotics, whereyt is regarded as a triangular array generated by (1)

with

a = ec/n ≈ 1 +
c

n
, (2)

with c ∈ R constant for alln, and hencea → 1 asn → ∞. This was first proposed by Bobkoski

(1983), and subsequently Phillips (1987a) and Chan and Wei (1987) showed that this leads to asymptotic

behaviour of̂a that changes continuously fromc < 0 (hencea < 1) via c = 0 (a = 1) to c > 0 (a > 1).

Furthermore, Phillips (1987a) showed that the conventional (fixeda) asymptotics are recovered from

this approach by lettingc → ±∞.

In a recent paper, Phillips, Moon and Xiao (2001), henceforth PMX, propose a generalization of the

local to unity approach, which they termblock local to unityasymptotics. The basic idea is to think of

∗Address for correspondence: Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11, NL-
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the sample of sizen as consisting ofM blocks ofm observations each, such thatn = Mm, and to

replace (2) by

a = ec/m ≈ 1 +
c

m
. (3)

Hencea → 1 as the number of observationsm within a block approaches infinity. PMX show that the

asymptotic distribution of̂a for M fixed andm →∞ is a generalization of the local-to-unity asymptotic

distribution, characterized by a finite diffusion mixture. On the other hand, undersequential asymptotics

wherem →∞ first, followed byM →∞ (denoted by(m, M →∞)seq), it is shown that whenc < 0,

m(â−1) is a
√

M -consistent and asymptotically normal estimator ofc. This ability to deliver consistent

estimation ofc is viewed as one of the main advantages of the block local to unity approach, because the

lack of convergence ofn(â − 1) to c asn → ∞ under (2) leads to serious problems for bootstrapping

(see Basawaet al., 1991) as well as for inference on cointegration with near-integrated processes (see

Elliott, 1998). An additional advantage is that the approach allows for a continuum of convergence

rates ofâ under stationarity (c < 0): letting m = nγ andM = n1−γ with 0 ≤ γ ≤ 1, it follows

that â − a = Op

(
M−1/2m−1

)
= Op

(
n−1/2−γ/2

)
, which varies fromOp

(
n−1/2

)
(γ = 0, fixed a

asymptotics) throughOp(n−1) (γ = 1, local to unity asymptotics). PMX also analyse extensions of

the basic model, allowing for various starting value assumptions, for short-run dependence inut with

possibly changing parameters over the blocks, and for deterministic regressors in (1).

In this paper, I provide an interpretation of the block local to unity parametrization from a continu-

ous record asymptotic perspective, see Phillips (1987a, b), Perron (1991a, b) and Sørensen (1992). In

particular, it is shown thatyt generated by (1) under (3) arises quite naturally as a discretely sampled

continuous-time Ornstein-Uhlenbeck process on[0,M ]. On the one hand, this gives an additional jus-

tification for (3), but at the same time it indicates that theM → ∞ assumption may not yield a very

accurate approximation in some practical situations. For fixedM and homogeneous dynamics, I will

demonstrate that inference based on the block local to unity approach essentially coincides with the

conventional local to unity inference, although the former involves a more natural parametrization.

The plan of the remainder of this paper is as follows. Section 2 sets out the continuous-time frame-

work and shows how this provides a convenient interpretation of the block local to unity model under

i.i.d. innovations. Section 3 discusses how the results change in the presence of heterogeneous dynam-

ics, and the final section discusses the practical relevance of the results. The notation used in the paper is

largely the same as in PMX, with the exception of “∼” denoting “is distributed as”; weak convergence

is denoted by “⇒”.

2 Continuous record asymptotics

Consider a bivariate Brownian motion(B(s), B−1(s))′ on [0,∞) with variance matrixσ2I2, and define

the Ornstein-Uhlenbeck (OU) processJc(s) on [0,∞), generated conditional on its starting valueJc(0)

by

dJc(s) = cJc(s)ds + dB(s). (4)
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The starting valueJc(0) is determined byB−1(s), s ∈ [0,∞), independently ofB(s), s ∈ [0,∞), by

either one of the two following possibilities:

(i) Jc(0) =
∫ 0
−κ e−(s+κ)cdB−1(−s) ∼ N(0, σ2(e2κc − 1)/2c) for some finiteκ ≥ 0.

(ii) c < 0 andJc(0) =
∫ 0
−∞ e−scdB−1(−s) ∼ N(0,−σ2/2c).

Assumption (i) corresponds to the process starting at zero at times = −κ; possibility (ii) states that

the process started at the infinite past, and hence has the stationaryN(0,−σ2/2c) distribution at time

s = 0.

In what follows it will be helpful to think of the time indexs as calendar time, e.g. measured in

years. Suppose that we observeJc over the period[0,M ], atn + 1 equidistant time points

s0 = 0, s1 =
1
n

M, . . . , sn−1 =
n− 1

n
M, sn = M.

Suppose also that we choosen = mM for some integerm, such thatst = t/m, t = 0, . . . , n. Then

m is the number of time points in an interval of unit length, and hence, ifs is measured in years, the

number of observations per year. A well known property of the OU process is

Jc(st) = ecstJc(0) +
∫ st

0
e(st−s)cdB(s)

= ec/m

(
ecst−1Jc(0) +

∫ st−1

0
e(st−1−s)cdB(s)

)
+

∫ st

st−1

e(st−s)cdB(s)

= ec/mJc(st−1) +
∫ st

st−1

e(st−s)cdB(s). (5)

The final term is independent ofJc(st−1) and has aN(0, σ2(e2c/m − 1)/2c) distribution whenc 6= 0,

and aN(0, σ2/m) distribution forc = 0. Thus, let

yt = τ c,mJc(st), ut = τ c,m

∫ st

st−1

e(st−s)cdB(s), t = 1, . . . , n, (6)

with y0 = τ c,mJc(0), and where

τ c,m =

{ √
2c/(e2c/m − 1), c 6= 0,

√
m, c = 0.

Then is it clear thatyt satisfies the first-order autoregression (1) witha = ec/m andut ∼ i.i.d. N(0, σ2).

Note that the scaling factorτ c,m is used only to obtain correspondence between the variances ofut

andB(s); it could be replaced simply by
√

m without affecting any of the results below, since the

least-squares estimator is invariant to a scale change in{yt}.
The above discussion shows that the block local to unity model, in its simplest form, arises naturally

when the time series{yt} is a discretely observed OU process over a period[0,M ]. As an example

of where such a situation might occur, suppose that we have observations on a short-term interest rate

over a period ofM years, at various frequencies, e.g. monthly (m = 12), weekly (m = 52) or daily

(m = 250, allowing for weekends and bank holidays). The well-known Vasicek (1977) model entails
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that the short rate follows an OU process, and this model is often used to price interest rate derivatives,

which requires an estimate ofc (andσ). Taking the obvious estimator̂c = m log â ≈ m(â − 1) of c,

one would like to assess the estimation uncertainty ofĉ, and in particular the effect of the observation

frequencym and the time spanM on this estimation error. The block local to unity approach allows

us to study these effects separately, and shows that for accurate estimation ofc it is important to choose

the time spanM sufficiently large, since(ĉ − c) = Op(M−1/2). (Note that consistent estimation of

σ requires onlym → ∞.) This confirms the empirical experience that the mean-reversion in interest

rates is typically so weak that, e.g., ten years of data is not sufficient to obtain a reliable estimate ofc

(significantly different from0), even if one has high-frequency data and hence a very large sample size

n.

Consider now the asymptotic behaviour ofâ whenyt is generated by (6). Whenm is fixed and

M → ∞, then this is simply a fixed-parameter autoregression, and hence the classical asymptotic

properties for the casesa < 1, a = 1 anda > 1 emerge (for the explosive case, special care has to be

taken of the starting value assumption). Focussing on the stationary case, this means that asM → ∞
(fixedm), √

n(â− a) ⇒ N(0, 1− a2), (7)

which implies √
M(ĉ− c) =

√
m
√

n(â− a) + op(1) ⇒ N(0,m(1− e2c/m)). (8)

Note that whenm → ∞ afterM → ∞, this implies
√

M(ĉ − c) ⇒ N(0,−2c), which is identical to

the(m,M →∞)seq result obtained by PMX (even though the limit operations are interchanged here).

Note also that the role ofm is relatively minor in this result, as the difference betweenm(1 − e2c/m)

and−2c will be relatively small for realistic values ofc andm.

Quite different results are obtained forM fixed,m →∞. In that case it follows for allc that

m(â− a) =

1
τ2

c,m

n∑

t=1

yt−1ut

1
mτ2

c,m

n∑

t=1

y2
t−1

=

n∑

t=1

Jc(st−1)
∫ st

st−1

e(st−s)cdB(s)

1
m

n∑

t=1

Jc(st−1)2
⇒

∫ M

0
Jc(s)dB(s)

∫ M

0
Jc(s)2ds

. (9)

The main step in proving this limit result is the fact that the difference between
∫ st

st−1
e(st−s)cdB(s) and∫ st

st−1
dB(s) = B(st) − B(st−1) vanishes asm → ∞, which is easily checked using integration by

parts on
∫ st

st−1
e(st−s)cdB(s). The limiting expression (9) is very resemblant to the usual local to unity

limiting distribution of n(â − a), the main difference being that the integrals are over[0,M ] instead

of the unit interval. However, a simple time scale change reveals that the two approaches are actually

equivalent: lettingr = s/M , it follows thatB̄(r) = M−1/2B(rM) is a Brownian motion on[0, 1] with

varianceσ2, and J̄c̄(r) = M−1/2Jc(rM) is an OU process on[0, 1] with mean-reversion parameter

c̄ = Mc, generated by

dJ̄c̄(r) = c̄J̄c̄(r)dr + dB̄(r),
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with J̄c̄(0) = M−1/2Jc(0). Therefore, (9) may be rewritten as

n(â− a) = Mm(â− a) ⇒

∫ M

0
Jc(s)dB(s)

1
M

∫ M

0
Jc(s)2ds

=

∫ 1

0
J̄c̄(r)dB̄(r)

∫ 1

0
J̄c̄(r)2dr

. (10)

This shows that the same asymptotic inference applies as in the usual local to unity case, using an

appropriate definition of̄c = n log a = Mm log a = Mc, and an appropriate starting value assumption,

namely that the process has started at zero at time−κ̄ = −κ/M , with κ̄ either finite (case (i)) or infinite

with c < 0 (case (ii)). The asymptotic distribution (10) is invariant toσ but does depend on the starting

value (even whenc = 0), in particular on the choice of̄κ, but this is a well-known property of continuous

record asymptotics, see, e.g., Phillips (1987b) and Perron (1991b).

The asymptotic normality under(m, M → ∞)seq with c < 0 now follows directly from (9), since

the right-hand side expression equalsĉML − c, the centered maximum likelihood estimator ofc based

on a continuous sample{Jc(s), s ∈ [0,M ]}. Whenc < 0, this estimator is well known to be
√

M -

consistent and asymptotically normal, with
√

M(ĉML − c) ⇒ N(0,−2c), see e.g. Basawa and Prakasa

Rao (1980). As shown by PMX, this result essentially follows from writing the integrals from0 to M as

the sum of integrals from0 to 1, and applying a central limit theorem to the numerator of (10) (divided

by
√

M ) and a law of large numbers to the denominator. Note that, using (10) andc̄ = Mc, this actually

provides an alternative proof of Phillips’ (1987a) result that asc̄ → −∞,

√
−1
2c̄

∫ 1

0
J̄c̄(r)dB̄(r)

∫ 1

0
J̄c̄(r)2dr

⇒ N(0, 1).

The above discussions have shown that this sequential asymptotic result coincides with the result from

applyingM → ∞ first, followed bym → ∞, and furthermore it has appeared that the continuous

record step (m →∞ ) has a minor role in this, and only slightly changes the variance of the asymptotic

normal distribution.

In summary, it may be concluded that in the case of i.i.d. innovations, the new block local to unity

asymptotic approach coincides with either the standard local to unity approach (if the number of blocks

M is kept fixed), or with the traditional fixeda asymptotics (under(m,M → ∞)seq), at least in the

mean-reverting (c < 0) and unit root (c = 0) case. However, PMX also consider the case whereut

is generated by a possibly heterogeneous linear process, the implications of which are discussed in the

next section.

3 Heterogeneous dynamics

PMX assume that instead of an i.i.d.N(0, σ2) process,ut is modelled as a heterogeneous linear process

ut =
∑∞

j=0 bk,jεt−j , whereεt ∼ i.i.d. (0, 1) and0 < (
∑∞

j=0 bk,j)2 = ω2
k < ∞, and wherek ∈

{0, 1, . . . ,M} is a block index. This implies thatyt may no longer be interpreted as a discretely sampled
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OU process, but the same continuous record notion may still be used to interpret the block local to

unity asymptotic results. The serial dependence inut implies that the least-squares estimator has an

asymptotic bias term, but this may be corrected in the usual non-parametric way as shown by PMX.

More important is the heterogeneity in the long-run variancesω2
k, which implies thatm−1/2y[sm] no

longer converges weakly to a homogeneous OU process, but instead converges to a processHc(s)

generated by

dHc(s) = cHc(s)ds + ω(s)dW (s), (11)

whereW (s) is a standard Brownian motion on[0,M ] andω(s)2 =
∑M

k=1 1(k−1,k](s)ω2
k. The process

is started up in the same way asJc (possibly also allowing for some pre-sampe heterogeneity). Note

that PMX do not use the notation in terms of one process on[0,M ], but writeHc(s) as a concatenated

version of the OU processesHk,c(r) on [0, 1], each driven by its own Brownian motionBk(r) with

varianceω2
k. The M fixed, m → ∞ limit theory for the least-squares estimator corrected for bias,

denoted̂a+, now may be expressed as

m(â+ − a) ⇒

∫ M

0
Hc(s)ω(s)dW (s)

∫ M

0
Hc(s)2ds

. (12)

This limiting distribution now depends not only onc but also on{ω2
k}, even asM → ∞, see Theorem

2 of PMX. An obvious improvement over the ordinary least-squares estimator is the (feasible) weighted

least-squares estimatorâ+
ω , which has the following limit distribution asm →∞:

m(â+
ω − a) ⇒

∫ M

0
ω(s)−1Hc(s)dW (s)

∫ M

0
ω(s)−2Hc(s)2ds

. (13)

This distribution still depends on{ω2
k}, becauseω(s)−1Hc(s) is not a homogeneous OU process; note

thatHc is standardized by its most recent volatility, but determined itself by the current and all previous

volatilities. Because{ω2
k} can be estimated consistently (m → ∞), this need not pose an insurmount-

able problem for inference ona, as the distribution in (13) can be obtained givenc and{ω2
k} by simu-

lation. However, it indicates a lack of robustness of the conventional local to unity asymptotics to this

type of heterogeneity. Ifc < 0 and the average varianceM−1
∑M

k=1 ω2
k converges to a constant, then

asM →∞, this problem disappears, since
√

Mm(â+
ω − a) ⇒ N(0,−2c) just as in the homogeneous

case, see PMX, Theorem 3.

4 Discussion

The purpose of this paper has been to provide a reinterpretation of the block local to unity asymptotics

in a continuous record framework, which allows the number of blocksM to be interpreted as the time

span, andm as the observation frequency. The block local to unity approach allows us to study the
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effect of these two parameters on the distribution of the least-squares estimator separately, and one

might argue that this is the main contribution of this approach. The continuum of convergence ratesnα,

α ∈ [12 , 1] under stationarity can also be interpreted in the continuous record framework: the rate of

convergence is determined by the rate at which the informationσ−2
∑n

t=1 y2
t−1 grows, and the contin-

uous record asymptotic analysis shows that (ifc < 0) this quantity grows linearly with the time span

M but quadratically with the sampling frequencym. Thus the rate at which the information grows with

the sample size depends on the relative contribution of sampling frequency and time span to the growth

of n. Put differently, the relevant result iŝa − a = Op

(
M−1/2m−1

)
, which is more informative than

â− a = Op(n−α) for someα.

The continuous record interpretation has shown that under homogeneity, the block local to unity

approach either coincides with the local to unity approach (fixed time span) or yields virtually the same

inference as traditional fixeda asymptotics, at least fora ≤ 1. Under block heterogeneity the model

does yield new results, and in particular highlights the lack of robustness of local to unity inference to

this type of heterogeneity. Although one might argue that the model where the variance is constant over

time stretches of equal length (say, years) is not very realistic for economic data, the result is indicative

of the type of problems encountered with local to unity asymptotics when the volatility is time-varying

but displays some persistence, such that the heteroskedasticity is not averaged out unless one considers

a very long time span. A very related result was obtained by Boswijk (2000) for the case where the

volatility follows a near-integrated GARCH processes. The present approach shows that in such cases

one either has to use the estimated volatility process for obtaining critical values, or revert to the large

M asymptotic normal approximation (assuminga < 1).

The question that remains is which type of asymptotics practitioners should be advised to use. In the

interest rate example mentioned earlier, it seems likely that10 years of daily data is not sufficient to use

the asymptotic normal approximation for the distribution ofĉ. For macro-economic time series such as

the real GDP one might have reliable data over a considerably longer time span, but then the true rate of

mean reversion might be so close to zero that the normal approximation is again not reliable. From (10)

we see that it is̄c = Mc rather thanM only that determines the accuracy of the normal approximation,

which again brings us back to the original local to unity result. This also casts some doubt on the ability

of this new approach to solve the problems with bootstrapping and cointegration inference mentioned in

the introduction, since these will be primarily dependent onc̄ rather thanc. It is clear that an asymptotic

normal confidence interval̂c± 1.96
√
−2ĉ/M is invalid if it containsc = 0, since it would then contain

at least one parameter value which is accepted based on the wrong null distribution. But how far the

upper bound of the interval should be away from zero to yield reliable inferences based on asymptotic

normality is an open question, determined by the question how close to the normal (in some suitable

sense) the distribution of (10) is. Since the local to unity inference will automatically converge to normal

inference asMc → −∞, the most reliable way to proceed in empirical practice would be to use the

former at all times, taking appropriate care of possible dependence and heterogeneity.
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