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Abstract

This paper provides a continuous record interpretation of the block local to unity asymptotics
proposed recently by Phillips, Moon and Xiao (2001). It also demonstrates that in the case of
homogeneous dynamics and a fixed number of blocks, the new asymptotic approximation coincides
with the conventional local to unity asymptotic approximation.

1 Introduction
Consider the first-order autoregressive model for an observed time §gries= 0,1,...,n}:
yt:ayt—1+ut7 t:17"'7n7 (1)

whereu, is an i.i.d. (0, 02) process. It is well known that the asymptotic properties of the least-squares
estimatora = (37, yf_l)_l S, w1y are quite different for the three case$ < 1, a = 1 and

a > 1, corresponding to stationary, integrated and explosive processes, respectively, in terms of both
the speed of convergence and the shape of the limiting distribution of the normalized estimator. This
difference, and in particular the discontinuity of the asymptotic properties-atl, has motivated the
development ofocal to unityasymptotics, wherg; is regarded as a triangular array generated by (1)
with

a:ec/”z1+£, 2
n

with ¢ € R constant for allz, and hencet — 1 asn — oo. This was first proposed by Bobkoski
(1983), and subsequently Phillips (1987a) and Chan and Wei (1987) showed that this leads to asymptotic
behaviour ofi that changes continuously from< 0 (hencen < 1) viac=0(a =1)toc > 0 (a > 1).
Furthermore, Phillips (1987a) showed that the conventional (fiyeasymptotics are recovered from
this approach by letting — +oc.

In a recent paper, Phillips, Moon and Xiao (2001), henceforth PMX, propose a generalization of the
local to unity approach, which they ternfock local to unityasymptotics. The basic idea is to think of
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the sample of sizes as consisting of\/ blocks of m observations each, such that= Mm, and to
replace (2) by

a=e/m 14 S (3)
m

Hencea — 1 as the number of observationswithin a block approaches infinity. PMX show that the
asymptotic distribution of for M fixed andm — oo is a generalization of the local-to-unity asymptotic
distribution, characterized by a finite diffusion mixture. On the other hand, wedgiential asymptotics
wherem — oo first, followed by M — oo (denoted by(m, M — 00)s,), it is shown that when < 0,
m(a—1)is av/M-consistent and asymptotically normal estimatat.6Fhis ability to deliver consistent
estimation ot is viewed as one of the main advantages of the block local to unity approach, because the
lack of convergence ai(a — 1) to c asn — oo under (2) leads to serious problems for bootstrapping
(see Basawat al, 1991) as well as for inference on cointegration with near-integrated processes (see
Elliott, 1998). An additional advantage is that the approach allows for a continuum of convergence
rates ofa under stationarityd < 0): lettingm = n” andM = n!'~=7 with 0 < v < 1, it follows

thata — a = O, (M~Y2m™1) = O, (n~1/277/2), which varies fromO, (n~/2) (y = 0, fixeda
asymptotics) througl®d,(n=1) (v = 1, local to unity asymptotics). PMX also analyse extensions of
the basic model, allowing for various starting value assumptions, for short-run dependenaeitim
possibly changing parameters over the blocks, and for deterministic regressors in (1).

In this paper, | provide an interpretation of the block local to unity parametrization from a continu-
ous record asymptotic perspective, see Phillips (1987a, b), Perron (1991a, b) and Sgrensen (1992). In
particular, it is shown thag; generated by (1) under (3) arises quite naturally as a discretely sampled
continuous-time Ornstein-Uhlenbeck procesg@®r/]. On the one hand, this gives an additional jus-
tification for (3), but at the same time it indicates that fle— oo assumption may not yield a very
accurate approximation in some practical situations. For fixednd homogeneous dynamics, | will
demonstrate that inference based on the block local to unity approach essentially coincides with the
conventional local to unity inference, although the former involves a more natural parametrization.

The plan of the remainder of this paper is as follows. Section 2 sets out the continuous-time frame-
work and shows how this provides a convenient interpretation of the block local to unity model under
i.i.d. innovations. Section 3 discusses how the results change in the presence of heterogeneous dynam-
ics, and the final section discusses the practical relevance of the results. The notation used in the paper is
largely the same as in PMX, with the exception ef*“denoting “is distributed as”; weak convergence
is denoted by £".

2 Continuous record asymptotics

Consider a bivariate Brownian motig(s), B_1(s))" on [0, co) with variance matrix 15, and define
the Ornstein-Uhlenbeck (OU) proce&ss) on [0, co), generated conditional on its starting vali€0)
by

dJe(s) = cJe(s)ds + dB(s). 4)



The starting value/.(0) is determined byB_,(s), s € [0, ), independently oB(s), s € [0,00), by
either one of the two following possibilities:

() Jo(0) = [° e~ (TedB_y(—s) ~ N(0,02(e2 — 1)/2c) for some finitex > 0.
(i) ¢ < 0andJ.(0) = [° e *dB_i(—s) ~ N(0,—a2/2¢).

Assumption (i) corresponds to the process starting at zero atstime «; possibility (ii) states that
the process started at the infinite past, and hence has the statiéftary o2 /2c) distribution at time
s =0.

In what follows it will be helpful to think of the time index as calendar time, e.g. measured in
years. Suppose that we obsetkeover the period0, M|, atn + 1 equidistant time points

1 n—1
80:0, Slng, ey Sp—1 =

M, s,=M.

Suppose also that we choose= mM for some integern, such thats, = t/m,t = 0,...,n. Then
m is the number of time points in an interval of unit length, and hencejsfmeasured in years, the
number of observations per year. A well known property of the OU process is

st
Jo(st) = eCSiJC(O)—F/ eBt=3)eqB(s)
0

St—1 St
= e/m <eCSt1JC(0)+ / e(SHS)CdB(s)> + / els=2)¢d B (s)
0

St—1

= M (si1) + / et =94 B (s). (5)

St—1

The final term is independent df.(s;_;) and has &V (0, o2(e?*/™ — 1) /2¢) distribution whenc # 0,
and aN (0, 2 /m) distribution forc = 0. Thus, let

Yt = Temde(St), up = Tc7m/ e(st_s)ch(s), t=1,...,n, (6)

St—1

with yo = 7¢.mJ:(0), and where

vm, c=0.

Then is it clear that, satisfies the first-order autoregression (1) with e/ andu; ~ i.i.d. N(0,02).

{ 2¢/(e2¢/m — 1), ¢ #0,
Tem =

Note that the scaling factar, ,,, is used only to obtain correspondence between the variances of
and B(s); it could be replaced simply by/m without affecting any of the results below, since the
least-squares estimator is invariant to a scale chanfg jn

The above discussion shows that the block local to unity model, in its simplest form, arises naturally
when the time serie§y; } is a discretely observed OU process over a pefiod/]. As an example
of where such a situation might occur, suppose that we have observations on a short-term interest rate
over a period ofM years, at various frequencies, e.g. monthly £ 12), weekly (n = 52) or daily
(m = 250, allowing for weekends and bank holidays). The well-known Vasicek (1977) model entails
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that the short rate follows an OU process, and this model is often used to price interest rate derivatives,
which requires an estimate ef(andc). Taking the obvious estimatér= mloga ~ m(a — 1) of ¢,
one would like to assess the estimation uncertaint§, aind in particular the effect of the observation
frequencym and the time spai/ on this estimation error. The block local to unity approach allows
us to study these effects separately, and shows that for accurate estimatibis @hportant to choose
the time spanV/ sufficiently large, sincéc — c¢) = Op(Mfl/Q). (Note that consistent estimation of
o requires onlym — oo.) This confirms the empirical experience that the mean-reversion in interest
rates is typically so weak that, e.g., ten years of data is not sufficient to obtain a reliable estimate of
(significantly different fron0), even if one has high-frequency data and hence a very large sample size
n.

Consider now the asymptotic behaviourdfvheny; is generated by (6). Whem is fixed and
M — oo, then this is simply a fixed-parameter autoregression, and hence the classical asymptotic
properties for the cases< 1, a = 1 anda > 1 emerge (for the explosive case, special care has to be
taken of the starting value assumption). Focussing on the stationary case, this meandfhat as
(fixed m),

Vvn(a—a) = N(0,1 —a?), 7)

which implies

VM (& —¢) = my/n(a — a) + 0,(1) = N(0,m(1 — 2/™)). (8)

Note that whenn — oo after M — oo, this impliesv/M (¢ — ¢) = N(0, —2¢), which is identical to
the (m, M — 00)s¢q result obtained by PMX (even though the limit operations are interchanged here).
Note also that the role of. is relatively minor in this result, as the difference betweefi — e2/™)
and—2c will be relatively small for realistic values efandm.

Quite different results are obtained fbf fixed, m — oo. In that case it follows for alt that

1 & n St
) > v ZJC(St—l)/
C t=1 t—

st—s)c M
el ) dB(s) / Jo(s)dB(s)
1M t=1 St—1 0

m(a —a) = — = -

1 9 1 & ) M , :
2 Zyt—l 7ZJC(St—1) / Je(s)%ds
mre t=1 O t=1 0

,m

(9)

The main step in proving this limit result is the fact that the difference betygene(s:~*)<dB(s) and

f;:_l dB(s) = B(st) — B(st—1) vanishes asn — oo, which is easily checked using integration by
parts onfjt’i1 e(s*=9)¢dB(s). The limiting expression (9) is very resemblant to the usual local to unity
limiting distribution of n(a — a), the main difference being that the integrals are qoel | instead

of the unit interval. However, a simple time scale change reveals that the two approaches are actually
equivalent: letting: = s/M, it follows thatB(r) = M~'/2B(rM) is a Brownian motion of, 1] with
varianceo?, and J:(r) = M~Y2J,(rM) is an OU process oft, 1] with mean-reversion parameter

¢ = Mc, generated by

dJs(r) = eJz(r)dr + dB(r),



with Jz(0) = M~1/2J.(0). Therefore, (9) may be rewritten as

n(a—a) = : (10)
M/ s)2ds /0 Jz(r)2dr

This shows that the same asymptotic inference applies as in the usual local to unity case, using an

appropriate definition of = nloga = Mmloga = Mc¢, and an appropriate starting value assumption,
namely that the process has started at zero attime- —x /M, with & either finite (case (i) or infinite
with ¢ < 0 (case (ii)). The asymptotic distribution (10) is invarianttbut does depend on the starting
value (even when = 0), in particular on the choice @f, but this is a well-known property of continuous
record asymptotics, see, e.g., Phillips (1987b) and Perron (1991b).

The asymptotic normality undérm, M — 00)s., With ¢ < 0 now follows directly from (9), since
the right-hand side expression equals;, — ¢, the centered maximum likelihood estimatorcdfased
on a continuous samplg/.(s),s € [0, M]}. Whenc < 0, this estimator is well known to be/M-
consistent and asymptotically normal, wighVZ (¢;;z, — ¢) = N (0, —2c), see e.g. Basawa and Prakasa
Rao (1980). As shown by PMX, this result essentially follows from writing the integrals @rtom/ as
the sum of integrals frorfi to 1, and applying a central limit theorem to the numerator of (10) (divided
by v/M) and a law of large numbers to the denominator. Note that, using (1@)-antl/c, this actually
provides an alternative proof of Phillips’ (1987a) result that as —oo,

@/ o

r)2dr

The above discussions have shown that this sequential asymptotic result coincides with the result from
applying M — oo first, followed bym — oo, and furthermore it has appeared that the continuous
record stepio — oo ) has a minor role in this, and only slightly changes the variance of the asymptotic
normal distribution.

In summary, it may be concluded that in the case of i.i.d. innovations, the new block local to unity
asymptotic approach coincides with either the standard local to unity approach (if the number of blocks
M is kept fixed), or with the traditional fixed asymptotics (undefm, M — c0),¢,), at least in the
mean-revertingd < 0) and unit root ¢ = 0) case. However, PMX also consider the case where
is generated by a possibly heterogeneous linear process, the implications of which are discussed in the
next section.

3 Heterogeneous dynamics

PMX assume that instead of an i.id(0, o%) processy; is modelled as a heterogeneous linear process
up = Y220 bk jer—j, whereey ~iid. (0,1) and0 < (3-520bk;)* = wi < oo, and wherek €
{0,1,..., M}isablockindex. Thisimplies thgt may no longer be interpreted as a discretely sampled
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OU process, but the same continuous record notion may still be used to interpret the block local to
unity asymptotic results. The serial dependence;iimplies that the least-squares estimator has an
asymptotic bias term, but this may be corrected in the usual non-parametric way as shown by PMX.
More important is the heterogeneity in the long-run variamz%swhich implies thatm—l/Qy[sm] no
longer converges weakly to a homogeneous OU process, but instead converges to afpr0cess
generated by

dH.(s) = cH.(s)ds + w(s)dW (s), (11)

whereW (s) is a standard Brownian motion ¢, ] andw(s)? = Ekle 1(4—1,4 (s)w}. The process

is started up in the same way 4ds (possibly also allowing for some pre-sampe heterogeneity). Note
that PMX do not use the notation in terms of one proces®ol/|, but write H.(s) as a concatenated
version of the OU processéd$; .(r) on [0,1], each driven by its own Brownian motiaBy(r) with
variancewi. The M fixed, m — oo limit theory for the least-squares estimator corrected for bias,
denotedi™, now may be expressed as

M
H.(s)w(s)dW(s)
M
/ H.(s)3ds
0

This limiting distribution now depends not only erbut also on{w?}, even asM — oo, see Theorem

m(at —a) = /0 (12)

2 of PMX. An obvious improvement over the ordinary least-squares estimator is the (feasible) weighted
least-squares estimataf;, which has the following limit distribution as — oo:

M
/0 w(s) L H.(s)dW (s)

- (13)
/ w(s)™2H.(s)%ds
0

m(a) —a) =

This distribution still depends ofw? }, becausev(s) ' H.(s) is not a homogeneous OU process; note
that H. is standardized by its most recent volatility, but determined itself by the current and all previous
volatilities. Because{wi} can be estimated consistenthy (— oo), this need not pose an insurmount-
able problem for inference an as the distribution in (13) can be obtained givesand {w?} by simu-

lation. However, it indicates a lack of robustness of the conventional local to unity asymptotics to this
type of heterogeneity. ¥ < 0 and the average variandé ! 224:1 w% converges to a constant, then
asM — oo, this problem disappears, sing&/m(a} — a) = N(0, —2c) just as in the homogeneous
case, see PMX, Theorem 3.

4 Discussion

The purpose of this paper has been to provide a reinterpretation of the block local to unity asymptotics
in a continuous record framework, which allows the number of blddki be interpreted as the time
span, andn as the observation frequency. The block local to unity approach allows us to study the



effect of these two parameters on the distribution of the least-squares estimator separately, and one

might argue that this is the main contribution of this approach. The continuum of convergenee*rates

1
2

convergence is determined by the rate at which the informationy ", v? ; grows, and the contin-

a € [5,1] under stationarity can also be interpreted in the continuous record framework: the rate of
uous record asymptotic analysis shows that (i 0) this quantity grows linearly with the time span

M but quadratically with the sampling frequeney Thus the rate at which the information grows with

the sample size depends on the relative contribution of sampling frequency and time span to the growth
of n. Put differently, the relevant resultis— a = O, (M ~/2m~1), which is more informative than

a—a = Op(n~*) for somea.

The continuous record interpretation has shown that under homogeneity, the block local to unity
approach either coincides with the local to unity approach (fixed time span) or yields virtually the same
inference as traditional fixed asymptotics, at least far < 1. Under block heterogeneity the model
does yield new results, and in particular highlights the lack of robustness of local to unity inference to
this type of heterogeneity. Although one might argue that the model where the variance is constant over
time stretches of equal length (say, years) is not very realistic for economic data, the result is indicative
of the type of problems encountered with local to unity asymptotics when the volatility is time-varying
but displays some persistence, such that the heteroskedasticity is not averaged out unless one considers
a very long time span. A very related result was obtained by Boswijk (2000) for the case where the
volatility follows a near-integrated GARCH processes. The present approach shows that in such cases
one either has to use the estimated volatility process for obtaining critical values, or revert to the large
M asymptotic normal approximation (assuming: 1).

The question that remains is which type of asymptotics practitioners should be advised to use. In the
interest rate example mentioned earlier, it seems likelytthgears of daily data is not sufficient to use
the asymptotic normal approximation for the distributioré oFor macro-economic time series such as
the real GDP one might have reliable data over a considerably longer time span, but then the true rate of
mean reversion might be so close to zero that the normal approximation is again not reliable. From (10)
we see that it i€ = M c rather thanV/ only that determines the accuracy of the normal approximation,
which again brings us back to the original local to unity result. This also casts some doubt on the ability
of this new approach to solve the problems with bootstrapping and cointegration inference mentioned in
the introduction, since these will be primarily dependent oather thare. It is clear that an asymptotic
normal confidence interval+ 1.96./—2¢/M is invalid if it containse = 0, since it would then contain
at least one parameter value which is accepted based on the wrong null distribution. But how far the
upper bound of the interval should be away from zero to yield reliable inferences based on asymptotic
normality is an open question, determined by the question how close to the normal (in some suitable
sense) the distribution of (10) is. Since the local to unity inference will automatically converge to normal
inference asdVic — —oo, the most reliable way to proceed in empirical practice would be to use the
former at all times, taking appropriate care of possible dependence and heterogeneity.
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