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Abstract

Allowing for games with a continuous action space, we deal with the
question whether and when static concepts like evolutionary stability can
shed any light on what happens in the dynamical context of a population
playing these games. The continuous equivalents of theorems for the finite
case are either harder to prove or simply untrue. In some cases that
fall within the latter category, sensible additional assumptions can repair
the damage. Apart from that it turns out that we can no longer ignore
the mutation process; with a continuous action space it makes quite a
difference what kind of shocks we consider to be likely.

1 Introduction

Evolutionary game theory mainly focusses on symmetric games with a discrete
and even finite action space. For most of the phenomena we seek to explain that
is no real restriction; in quite some cases these games fit reality well enough to
help us say something sensible about human or animal behaviour. For the finite
case a coherent theory has been developed, which is well reflected in the book
by Weibull (1995). There may be evolutionary interesting games though that
naturally have a continuous strategy space. Trying to tackle these games as
well, useful results have been proven by, amongst others, Seymour (2000) and
Oechssler and Riedel (2000, 2001), but the theory is still not as complete as
for the finite case. This paper is an attempt to get a bit closer to a complete
picture by gathering the more significant results and, more than that, finding
the missing links.

Like Seymour and Oechssler and Riedel, we will closely follow the concepts of
evolutionary stability and replicator dynamics as they are defined for the finite
case and our aim is to find out whether these two can be linked. We will discover
that continuity complicates matters; definitions that coincide in the discrete case



cease to do so in the continuous case. As a result of this evolutionary stability
in its most common definition no longer guarantees asymptotic stability in the
replicator dynamics. The main part of this paper - section 3 - is therefore
devoted to sorting out which of the standard results hold for the continuous
case as they did in the finite and which do not. Some of the results that do not
survive the transition can be restored under additional assumptions.

Another complication is that with a continuous action space it is a lot less
clear what small perturbations of a population state are; there is a variety of
possibilities what kind of shocks we think a population should be able to over-
come before we call it stable. Section 4 lists the different options and discusses
how well they fit a model of mutation. Section 5 is devoted to an alternative ap-
proach, taken by Sigmund and Hofbauer (1998). Their adaptive dynamics may
for a subset of games prescribe dynamical behaviour similar to the behaviour of
our replicator dynamics, but there are differences that need to be brought out.

2 Definitions

Before we start I would like to stress the fact that we do allow for mixed strate-
gies here. This possibility is sometimes ignored in games with a continuous
action space for obvious reasons: no mixed strategies are needed to prove exis-
tence of an equilibrium of a game with a compact and convex action space and
continuous and quasiconcave utility functions. But just the fact that we do not
need the possibility of mixed strategies to make sure an equilibrium exists does
not make mixed strategies any more or less realistic. A mixed strategy can be
seen as either to represent a player that draws his action from a distribution
or as a population in which different actions are being played and in which one
is uncertain which player one will encounter. The last interpretation is obvi-
ously the one evolutionary game theory favours. A (symmetric) equilibrium in
mixed strategies is then nothing but a heterogeneous population being in equi-
librium with itself, and I think there is no reason why we should not consider
this possibility in the continuous case.

Let’s start with the game. The action space S is a subset of R and at some
points in the text S will be assumed to be compact and/or convex. A strategy
is being described with a probability measure P on (S,5) with Borel o-field
B. We assume all probability measures not to be singular and the set of all
those non-singular probability measures on S is denoted by P [S,B]. Some-
times there is reason to restrict ourselves to distributions that have a den-
sity, that is, probability measures P for which there is a function f : § — R
such that P(B) = P{xz € B} = [, f(y)dy for any B € B, but in general
we do allow for mixtures. Therefore, for any P we will define Ap as its set
of atoms and Cp as the support set of the remainder. To be a bit more
formal, we first define Ap = {z € S|P ({z}) > 0}. Since we only consider
non- singular probabilities, we know that there is a function f 8 — R with
Js f(y)dy =1— P (Ap) such that P (B\Ap) = [, f (y) dy and with this func-
tion we define Cp = Cl{z € S|f (z) > 0}. Obviously we can equate the support



set C (P) of P with Ap UCp.

The situation we will consider mostly is one of pairwise contests and random
matching; players are drawn at random from a population to play a symmetric 2-
player game, which is characterized by a function A : S x S— R. Here A (z,y)
is the payoff to player 1 if he plays x and the opponent plays y. Symmetry
implies that the payoff to player 2 then is A (y,z). The expected payoff to a
player playing strategy P against a player playing @ is given by the function
uw[P,Q] = [ [ A(x,y)dP (z)dQ (y). One could think of more general forms of
this function w [P, Q)] that are not necessarily bilinear. This would allow for
games like the sex ratio game as described by Sigmund (1987), but it should be
noted that any expected payoff function that is not bilinear implies a departure
from the setting of pairwise contests, as Bomze and Pstscher (1989) show. Most
of the results in this paper remain valid though in the more general setting where
u[P,Q] = [ Fo (x)dP (x).

The following three definitions are close copies of their discrete counterparts.

Definition 1 P is an evolutionary stable strategy if there exists an invasion
barrier € for every strategy QQ # P; €q is an invasion barrier for QQ # P if
u[P,(1—€)P+eQ] >ul[Q,(1—¢€)P+eQ)] for all e € (0,¢eq)

An equivalent definition of evolutionary stability is that both w[P, P] >
u[Q,P] for all @ and w[P,P] = v[Q,P] = u[P,Q] > u[Q,Q)] for all Q # P
must hold.

Definition 2 P has a uniform invasion barrier if there exists an€ € (0,1) such
that u[P,(1 —€) P+ €eQ] > u[Q, (1 —€) P+ €Q] for all Q@ # P and all € € (0,%)

Definition 3 P is locally superior if it has a vicinity V such that u[P,Q] >
u[@,Q] for allQ # P in'V.

Whether or not a strategy is locally superior obviously depends on what we
consider to be a vicinity. In this section I will give the bare definitions of a
few types of vicinities, but the question what vicinities we allow for is not just
of technical interest. After all, it would be nice if we could see a vicinity of a
population state P as a set of states that can be reached from P by mutations
with relatively large probability. Here we will stick to the technicalities, but
Section 4 will be entirely devoted to the interpretation of the types of vicinities.
Untill then will assume they are all equally sensible.

Please do note that we use the word wvicinity instead of the term neighbour-
hood. A vicinity is defined with the help of a function d : P [S,B] x P [S,B] —
R{{ , which is not necessarily a distance; V' is a vicinity of P if and only if there
isa ¢ > 0such that V ={Q € P[S,B] | d(P,Q) < 6}. If this function d is a
distance, then the set of all vicinities of all population states P makes a ba-
sis for a topology. However, one of the examples that follow is not a distance
and therefore it is better to avoid using neighbourhoods, that are only defined
once there is a topology. The details of the distinction between vicinities and



neighbourhoods can be found in the appendix, that also provides the proper
topological context.

We consider three possible functions d, the first one being the Prohorov
metric, which is defined by

d (P,Q) = inf{s > o’ ggg;

IAIA

Q(B°) +e,
P(B) +e for all B € B

where B = {x € S | 3y € B such that |z —y| <e}.!

It is worth knowing that the Prohorov metric metrizes weak convergence,
that is, dpy (Pn, P) — 0 if and only if [g(z)dP, (z) — [g(z)dP (x) for all
bounded and continuous g. The topology it induces is called the weak topology.

The second option is the variational distance,

dvd(PvQ) - QSup{‘P(A) - Q(A)|A € B}
d
= [ |47 42| du
for any p dominating both P and @,

which induces the strong topology. To illustrate the difference between the
vicinities we make with those two functions, we can take S = [0,1] and P
degenerate in 0. Now compare the collection V,, (P) of all vicinities of P in
the Prohorov metric to V,q (P) that contains all vicinities of P in the varia-
tional distance. It is not too hard to see that these two collections of vicini-
ties share no elements apart from the whole set P [S, B]; just take a look at
the probability measures P, degenerate in y. For y € (0,1] we find that
dyq (P, Py) = 2 whereas d,, (P, P,) = y. Therefore any vicinity of P in the
Prohorov metric contains probability measures P, (choose y < ¢ for a vicinity
Vor (P,6) ={Q € P[5, B8] | dpr (P, Q) < 6}) while none of these Py is contained
in any of the vicinities of P in the variational distance, apart from, of course,
the whole set P [S, B] which is a vicinity in the variational distance for § > 2
and in the Prohorov metric for § > 1.

Going in the opposite direction is more succesful; because dp,. (P, Q) <
%dvd (P, Q) we find that V,q (P,26) C V. (P, 6).

As a third possibility I suggest to use the Kullback-Leibler relative-entropy
measure:

du (P,Q) =Hp(Q)= [ log (%%) dP (x)
c(p)

ISee for instance Bickel, Klaassen, Ritov and Wellner (1993)



This function does not satisfy the triangle inequality and is not symmetric.
In the appendix we show that the set of all vicinities of all distributions P €
P [S, B] can not be a basis for a topology. In an alternative way one can use this
measure to define a non-trivial topology that could go by the name ’very strong’
topology. However, in this topology not all distributions have a neighbourhood
other than the whole set P [S, B] and that is the reason why we prefer to use
vicinities, of which there are enough for every distribution P € P [S, B]. Again,
for details I refer to the appendix.

To see where the vicinities we make with this Kullback-Leibler relative-
entropy measure differ from the other two, take S = [0,1] and P uniform on
S. Again we make a collection Vy; (P) of all vicinities of P in the Kullback-
Leibler entropy and compare this to Vyq (P). If we then consider disribu-
tions P, uniform on [y, 1], we find that for all y € (0,1) the Kullback-Leibler
entropy dy; (P, Py) = oo while dyq (P, Py) = 2y. This implies that Vj, (P)
and V,q (P) have no elements in common; any vicinity of P in the varia-
tional distance contains probability measures P, (just choose y < 6/2 for a
vicinity Vyq (P, 6) = {Q € P[5, B] | dva (P,Q) < ¢}) while none of these P, is
contained in any of the vicinities of P in the Kullback-Leibler entropy since
dkl (P7 Py) =00

Bomze (1991) uses Reiss (1989) to show that [duq (P, Q)] < dp (P,Q) and
therefore we know that Vi (P, 62) C Vi (P,6).

Summing up the relation between these three types of vicinities in an intu-
itive way, one can say that () being close to P in the variational distance implies
that @ is close to P in the Prohorov metric, but not the other way round, and
that if @ is close to P in the Kullback-Leibler sense, () will also be close to P
in the variational distance, but not the other way round.

In this paper I chose to stick to the term local superiority and mention
what types of vicinities are used. In the literature, some of those kinds of
local superiorities got names of their own; Bomze (1991) calls a strategy that is
locally superior in the variational distance strongly uninvadable and Oechssler
and Riedel (2000) term a strategy that is locally superior in the Prohorov metric
evolutionary robust.

For the derivation of the replicator dynamics we can simply follow the stan-
dard case. A population at time t is characterized by a measure R(t), where
R(t) (B) is the magnitude of the part of the population playing a strategy in
B € B at time t. By definition the expected payoff of a strategy in the game
determines the expected growth of the part of the population that plays it, so
we get

@ (B( gg‘A P (t) (dy) R (t) (dz) VBB
where P (t)(C) = £ (g VC e B

which can be rewritten as



& (P () (B) =

P
g S[ Az, y) P (t) (dy) P(t) (dx) — P (t) (B)g’ S[ A(z,y) P (t) (dy) P (t) (dx)
VB eB

In the more general, non-bilinear case this would be:

G (P()(B) = g Fpg) (z) P (t) (dz) — P (t) (B) g Fp) (z) P (t) (dx)
VBeB

Note that the space on which the last two differential equations are defined
is the set P [S, B] since P(t) (S) = 1. All points along a trajectory through a
point P (0) have the same atoms, but in the limit atoms can both pop up and
disappear. More formally, if we define Ap(oo) = {# € S|limy_ P (t) ({x}) > 0}
then neither Ap ) C Ap (o) n0r Ap(c) C Ap(o) necessarily holds.

The states that interest us most are the asymptotically stable states; states
that guarantee a pull back to status quo after any small perturbation of the
population state. Like local superiority, this concept is dependent on what we
consider small perturbations, or in other words: which type of vicinities we use.
As mentioned, Section 4 will be devoted to considerations of that kind. But
apart from that, asymptotic stability can be an empty concept for some choices
of vicinities. This will be discussed at the end of Section 3.

Of course there are other dynamics on a population we could look at; the
standard replicator dynamics is one out of many payoff monotonic growth-rate
functions. But given that we restrict ourselves to the setting of games being
played within one population,? I think that the replicator dynamics is the only
interesting dynamics. The reason for this is the following. Consider a function
O :PIS,B] — P|[S,B] which defines a dynamical system

4r=o()

Then either there is a game A : § x S— R for which the replicator dynamics
gives this O or there is not.? In case there is, this A is unique up to an affine
transformation, and although the same dynamics O could be composed of an-
other game A’ that is not an affine transformation of A and another dynamics,
the proper thing to do then would be to rescale A’ until it does fit the replicator
dynamics and not the other way round; the payoffs are to reflect fitness and

20ne could indeed allow for players from one population playing games with players from
another population. In that case there is the generalized replicator dynamics, that falls within
the class of positive definite adaptive dynamics. (Seymour (2000)). This multi-population
setting though is a setting we do not consider here.

3 Again, for the case where we do not assume pairwise contest, replace the game A by a
function F that assigns to every element of P [S,B] a function on the actionspace, that is,
Fg:S —R,Q € PIS, B] and use the non-bilinear replicator dynamics.



Figure 1:

that is what they do if they combine with the replicator dynamics to the given
dynamical system. If, on the other hand, there is no such A that does this trick,
this setting could never do as an explanation, so that puts such a dynamical
system outside the scope of this paper.

3 From evolutionary to asymptotically stable and
back

The most interesting question is now whether we can expect static concepts like
evolutionary stability to be of any use when trying to figure out where the harder
to handle replicator dynamics would take us. We know that in the discrete case
evolutionary stability (ESS), the existence of a uniform invasion barrier (UIB)
and local superiority (LS) are equivalent and imply asymptotic stability (AS).
Continuity breaks up a few of those links as we will see just now. The examples
that show which implications do not hold are of course negative results that
suggest that local superiority is the most useful of the three static concepts, but
all is not lost for evolutionary stability; there are assumptions that pave the way
from evolutionary stability to local superiority.

The implications under examination are drawn as arrows in figure 1. In this
section we will check them one at a time trying to find out which hold and
which don’t. We start with the relation between evolutionary stability and the
existence of a uniform invasion barrier.

1 ESS » UIB

To show that evolutionary stability does not imply that there is a uniform



invasion barrier, take the game A (z,y) = 3zy — 2* — y* and the strategy P
degenerate in 0.4 Since u[Q,P] < 0 = u[P,P] V Q # P, there is always an
e such that u [P, (1 —€) P+ Q] > u[Q, (1 — €) P+ €Q)] for all € € (0,€eq). But
for Q. degenerate in z with z — 0, we find, after rewriting the invasion barrier
equation, that

e, _ u[PPl—u[Q.P] _ _ 0=(=2') 4 .2
l—eg, ~ u[lQ:,Q:]—ulP,Q.] = 322—-22%—(—2%) = 3z2—2% T 3-—2%

which tends to 0 if z tends to 0. Therefore P, an evolutionary stable strategy,
fails to have a uniform invasion barrier.

We can show the following though:

Proposition 4 If P is an ESS, S is compact and {Qn}, oy 5 a sequence of
strategies with an invasion barrier that tends to 0, Q,, converges weakly to P.

Proof. Let {Qn}, oy be a sequence such that g, | 0. In order to apply the
lemma of Helly-Bray® we will identify probability measures Q,, with distribution
functions G,,. Since S is compact, the sequence {Qy},y is naturally tight.
With Helly-Bray we now know that there is a right-continuous non-decreasing
function G' and a subsequence {G, };cy such that lim; .o Gy, (z) = G (v) at
every point of continuity of G. The tightness of the sequence guarantees that this
G is a distribution function, which we therefore can identify with a probability
measure (). Now assume @) # P.

Since P is an ESS, we know by definition that for every @, either u [P, P] >
w[Qn, P] or w[P,P] = w[Qn,P] and u[P,Qn] > u|[Qn,Qr]. Because in the
latter case the invasion barrier is 1 as well as in the case of u [P, P] > u[Qn, P]
with w [P, Qp] > u[Qn, Qn), the fact that eg, decreases to 0 implies that from a
certain IV onwards all the strategies @Q,,,,7 > N fall into the category u [P, P] >
u[@Qn, P] and [P, Qn] < u [Qn, Qn]-

The invasion barrier equation tells us that

u[P,Pl—u[Qy,,P]

Qn; 0
“[Qni:Qn,,i}—u[P:Qn,,i} ’

1_6Qn,j B

Weak convergence of @), means that w[Qn,, P] — u[Q,P], u[P,Qn,] —
u[P, Q] and u [Qn;, Qn;] — ©[Q, @], since A is continuous and S compact. But
then we have found that P is not an ESS after all since u[P,Q] < u[Q, Q)]
and u [P, P] = v [Q, P], which follows directly from the fact that u[Qp,, Qn,] —
u [P, Qn,] is bounded.

Hereby we have shown that P is the only limit point of {Q,,}
fore that Q,, converges weakly to P. m

nens and there-

This result may not be too telling all by itself, but it can be used to show
that the following, more meaningful proposition holds.

4This example is from Oechssler and Riedel (2001), slightly adapted.
5See for instance Williams (1991).



Proposition 5 Assume contests are pairwise. If P has a density and S is
compact, P has an UIB if P is an ESS.

Proof. Assume that P is an ESS and that it has a density. Since P is an
ESS, every strategy @) has an invasion barrier g > 0 and it will do to prove that
there is no sequence {Qn },,cx such that lim, .o g, = 0. To do so, assume that
there is such a sequence. Proposition 4 tells us that then @, converges weakly
to P. Now first consider the possibility that after a finite number of Q),,’s the
remaining tail has only carriers that are subsets of the carrier of P, i.e. there
is an N such that C'(Q,) C C(P) for all n > N. In that case the invasion
barrier of every such @, equals 1; u [P, P] equals u [Q,, P] since P is a Nash
equilibrium and because P is also an ESS, u[Qy,, @n,] must be smaller than
u [P, Qp,;]. But then lim, . €g, = 1 while we just assumed eg, to go to 0,
and from this contradiction we can conclude that there must be a subsequence
{Qn, };en for which C (Qy,) is not a subset of C'(P) Vi € N. Now look at the
sequence

€Qn, _  ulP,Pl-u[Q.,;,P]
176Qni B U[QniaQn,i]fu[P,Qni]

for which we can assume without loss of generality that u [P, P] > u [Q,, P].°
Splitting every ) in a part on the carrier of P and on its complement, we get
Qn, = QL. + Q3, with C(Q},) € C(P) and C (Q2,) N C(P) = | for every
i. Every such part @, can be rescaled to make it a probability measure by

defining @il = fl (S)f1 - Qﬁh To keep the upcoming formula’s at least a
little legible, we will write «; ; for @7, (S). Now there is nothing left to do but
algebra:

ulP,Pl-u[Q.,,P] u[P,P]-u[Q) +Q} ,P] B
u[Qn, Qu,|-u[P,Qu,] — u[QL,+Q2,.QL +Q2 [-u[PQL +Q2 ] —
u[P,Pl—u[Q),.,P|—u[Q%,,P]
U[Q}H’Qzli]—i_u[Q}li’Q%,ﬁ]—i_u[Q%a’Q}li]+u[Q$li’leli]_U[P’Q}H]_U[P’Q%i,]
ai,»(ulP,Pl—u[Q;, ,P])
(@i1)?u@,,Qn, |~ i, u[PQ,, [+ (i2)?u[@;, @ |~ i 2u POy, 1+ iz (w[Q,,, @, 1+u[@), Q. 1)

Here we used the bilinearity of v and the fact that [P, P] = u[@ii, Pl.

Since @, converges weakly to P, we know that the same is true for @, and
that lim; oo Q% (S) = 0. Using this, we can say that the limit for i — oo of
this expression equals

ai 2 (ulP,Pl—u[Q ,P])

40

(ai,1)2u[P,P]—a,-,,1u[P,P]+(a,-,,z)2u@?,,i,5,2,i]—a,a,zu[P,G?,,i]Jra,r,]a,-,,z(u[P@?,,i]Jru@ii,P]) -

6We could remove those @’s for which this is not the case with the same procedure as we
just used to thin out this sequence. This leaves us an infinite subsequence by the exact same
argument; if not, lim; . €g, = 1 # 0.



lim; a2 (ulP,Pl—u(@;,, ) B
i—00 ,(w,1Oéi,zu[P,P]+(ai,2)2u[§ii ’672"i]7(0""2)2“[P’6ii]+04i,104i,2u[§ii,P] =
(ulP,PI—ul@;,,,P))

—ai (ulP,Pl—u[@), P])+ai 2 (ul@, Q5,1 —ulP @, ])

Since we assumed this limit to be 0 and because lim; oo 3,1 = lim; o0 Q}” (S) =
1, we obtain that”

. u[P,P]—u[Q% ,P])
Mmoo @, Q0 - ulPQ2, ) 0

and therefore

(ulP,P]—u[Q,,,,P])
u[@;,,,Q;,1-u[P,Q;,])

=0

(

This though would imply that lim; . e5z— = 0, but then d,, (@il , P) would

g

go to 0 for ¢ — oo, by proposition 4, which is not the case since P has a density
and C(Q%) N C(P) = (. Hence, the assumption that there is a sequence
{Qn},cn such that lim, . €q, = 0 leads to a contradiction when P has a
density and S is compact. m

2 UIB = ESS.

The other direction is much easier; it is obvious that a strategy with a
uniform invasion barrier is an ESS.

3 UIB »# LSy,

The following game is not very elegant, but it serves as an example of a
game with a strategy that has a uniform invasion barrier without being locally
superior in the Kullback-Leibler relative-entropy measure. Let S be the interval
[—7,27] and take the sequence {an }, oy With a, = (1 — 3¢ ) 7. Define the game
as

|sin § (z — )| z € [—m, 7] y € [-m, 7]
- !
A= Bacawtieosyan o crn g T tan] Y€ - an]

(m+an)(an—an—1)
0 elsewhere

Now take as an equilibrium strategy P the uniform distribution on [—, ],
in other words,

an =0 < lim Cnantbn _
cnan+bn n—ee an

00 > litn 00 Cn + 2 = 00 ¢ limp 00 22 = 00 & limp 00 $2 =0

1f an, # 0V n, and limy— 0o ¢, = 1 then limp— oo

10



ar@) _ [ 9z w€[-mm]
dX(x) 0 elsewhere

where A is the Lebesque measure. Then we construct a sequence of signed
measures {Hy, },, .y with H, = H;f — H; which is defined by

i@ _ [ o CEMtan-1,mHan] | ani@ _ [ 5 @€ lan,T]
d\(z) 0 elsewhere dX(z) T 0 elsewhere

This is a sequence of differences that we use to make a sequence {Qy },cy
of strategies, where Q,, = P + %Hn Note that

limp o0 dit (P, Qn) = limp oo [ log (4%) dP (z) =

T oo ( T log 1dz + [ log 2dx) =0

an

With the obvious generalization of the function u to allow for the argu-
ments to be measures that do not necessarily integrate to 1 as a shortcut in the
algebra®, we can write

[ naQn]_u[PQn]:

u [P+ Hn,PJr 1H,| —u[P,P+13 H]

[PPH {u[Hn,P]+u[PH]}+ tu[H,,H,) —u [P, P] — tu[P H,] =
?U[Hn,P}+ Lu[H,, H,) =

3 {ul[HT, P]—u[H PR3 {u[HY HY ) —w[HE Hy ) —u[H,  Hf| +ulH, H, |} =
%{4—;2(3(7r7an)+2cos%an)74#%(4(7r7a))}+%{4—71rz (4(7rfa)78cosﬁ1n)}:

> ((m = an) — 2cos 3a,,) > 0

dl
N [

This implies that the strategy P is not locally superior in the Kullback-
Leibler relative-entropy measure. To show that the strategy P has a uniform

invasion barrier it will do to look at the sequence {Qn} with Qn P+ H,.
neN

For this sequence we find that

an T
Ru[H;,PfH{} =/ ‘sin%(wfy)|21ﬁdxidy— zcoséan
- an
7 . 1 1 1 1
u[H;,H;]:f J Jsin3 (z —y)| L dxstd y = 2 ((m — an) — 2cos 5a,)
an an
an, 7THan 3(m— an)+2c052an 1 da dy—

+ pl — + —
wlmhop]=ulmt pom] = |1 e

—T Ay

ﬁ (3 (m—an)+ 2cos %an)

11



Gn  _ _u[PPl—u[QuP] _ _—u[H,P] _
176@11 o u[éna@n]*u[P,Qn] B U[H”’P+H”] B
—((3(r—an)+2cos Ja,)—4(r—a,))  (m—an)—2cos ta,

(S(ﬂfa,l)+2cos%a,l)fscos %an o 3(7T—an,)—600s]§an, -

Wl

This implies that all the strategies @n have an invasion barrier of i. It can
easily be checked that this is also a lower bound on the invasion barriers of all
other mutant strategies, which means that we have found a uniform invasion
barrier.”

There are two kinds of assumptions we can make on the forms of strategies
under which equivalence can be restored. Please note that both propositions
do actually even a bit more than merely repair the third arrow from figure
1; the first goes from evolutionary stability directly to local superiority in the
Kullback-Leibler relative-entropy measure (1 and 3 in one step) and the second
gives a condition under which the existence of a uniform invasion barrier implies
local superiority in the variational distance (3 and 7).

Proposition 6 Assume that the carrier of P equals the action space S. Then
P is locally superior in the Prohorov metric if P is an ESS

Proof. This follows directly from the second definition of evolutionary sta-
bility that states that P is evolutionary stable if both [P, P] > u[Q,P] V Q
and u[P,P] = u[Q,P] = u[P,Q] > u[Q,Q] V Q # P hold. If the carrier of
P equals S then u [P, P] must equal u[Q, P] and then the second part of the
definition tells us that P must even be globally superior, and therefore that P
will also be locally superior in the Prohorov metric. =

Proposition 7 Assume that the carrier of P is finite. Then P is locally supe-
rior in the variational distance if P has a uniform invasion barrier

Proof. The proof can be found in Oechsler and Riedel (2001). Note that
they refer to a strategy as uninvadable when I say it has a uniform invasion
barrier and that their strong uninvadability equals what I call local superiority
in the variational distance.

4 LS;,,= UIB

This implication is relatively easy and basically not very different from the
finite case:

9In the game A we could replace 3 (m — an)+2cos %an by anything between 4 (7 — ay,) and
8 cos %an. We would only have to adapt the Q,’s accordingly; if we take (1 — ) *4 (7 — apn)+

B * 8 cos %an, B € (0,1), then we have to choose an « that exceeds 8 in Qn = P + aHpy.
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Proposition 8 A strategy P which is locally superior in the Kullback-Leibler
relative-entropy measure has a uniform invasion barrier.

Proof. First observe that

A (P,(1— ) P+eQ) = [ log (gr—sb@ ) dP (z) <
cle (d[(l )P+ Q]())

dP(x
Cf 10g(m73%)dp(w): J log 715dP (z) =log 75
(P) c(p)

P being locally superior in the Kullback-Leibler relative-entropy measure
means that there is a vicinity Vi (P, 8) of P such that for all R € Vi, (P, )

u[P, R] > u[R, R]

Now take € =1 — e~%. Using our first observation, we find that for all € < €
and all @ € P[S,B] the following holds: dy; (P, (1 —€) P+ €Q) < 6. The local
superiority then tells us that

ulP,(l—€e)P+eQ]—u[(l—€)P+eQ,(1—€)P+eQ] >0«
uleP,(1—€)P+eQ] —uleQ,(1—€)P+eQ] >0&
ulP,(1—€e)P+eQ] —u[Q,(1—€)P+eQ] >0

But then we have shown that € is an uniform invasion barrier. m

Now we will turn to how the three types of local superiority relate to each
other.

5 LS, LSpT

To show that local superiority in the variational distance does not imply
local superiority in the Prohorov-metric, take as a counterexample A (x,y) =
3xy — 22 — y? and P degenerate in 0. Now take a look at mutant strategies
of the form @ = (1 — €) P+ eH, where H is a probability measure which places
no mass at 0. For any such mutant @, we look at

ulP,(1—€)P+eH|—ul|(l—€)P+eH,(1—€)P+eH| =
ulP, H)—€e(1—€)u[H,P] - u[H, H]
which, by the double symmetry of A equals

€(2e — V)u[P,H] — €u[H, H]

10T his example is from Oechssler and Riedel (2000), slightly adapted.
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Since mixing only relatively deteriorates the payoff of the mutant, it will do
to look at degenerate H, where H, will be a probability measure degenerate in
z.

€(2e — V) u[P,H,] — u[H,, H,] = (e — 362) 22

which is larger than 0 for € < % P is therefore locally superior in the
variational distance. Yet, u[Q.,Q.] = 22 > —2? = u[P,Q.], which shows that
P is not locally superior in the Prohorov-metric, since for any € there is a @,

for which d,, (@, P) < e.

6 LS, = LS.q

Since Viq (P,26) C V,, (P, ), a vicinity in the Prohorov-metric contains one
in the variational distance, so it is obvious that local superiority in the Prohorov
metric implies local superiority in the variational distance.

7 LSy, = LS.q

For a counterexample we go back to the one we used at arrow 3 and modify
it slightly. We change the game into

[sin 3 (= )| z € [~m,7] y € [=mm]
A={ _femiae o pcinia, g, m4a] ye |- an

(m+an)(an—an—1)
elsewhere

If we look at the same equilibrium strategy P, that is P uniform on [—7, 7],
and at mutant strategies @, (o) = P + aH,,, with the H,’s as before, we see
that

u [Qn (Oé) 7Qn (a)] _U[Pv Qn (a)] =

ou[H, P]+ o?u[H, H| =

a(w[HY P—H |+u[H ,P))+a?(u[H ,H]) =
a(Zcossa, — 5 (1 —a,)) + 02 (& (7 —a,) — % cosia,)

and this is smaller than 0 if « is smaller than 1. But for @ = 1, which makes
the only sequence {Qn (@)} ¢y that goes to 0 in the variational distance but
not in the Kullback-Leibler relative entropy measure, this expression equals 0.
Therefore P is not locally superior in the variational distance, although it is
locally superior in the Kullback-Leibler relative entropy measure.

8 std = LSkl
As in 6, Viy (P,6%) C Viq (P,6) means that local superiority in the varia-

tional distance implies local superiority in the Kullback-Leibler relative entropy
measure.
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Before making the final steps, we will have to consider in what way definitions
of asymptotic stability make sense. As with local superiority, the choice of a
topology makes all the difference, but now not all topologies lead to sensible
definitions. Starting with the first candidate, the Prohorov-metric, it is clear
that for probability measures with isolated atoms, any neighbourhood contains
points from which return is impossible; take as an example P degenerate in
0. Any neighbourhood does not only contain points of possible return, like a
1 — € point mass at 0 and an € mass elsewhere, but also points that exclude
ever getting back, like a probability measure degenerate in € > 0. Therefore
asymptotic stability in the Prohorov-metric doesn’t make all that much sense
for this P. Asymptotic stability in the variational distance does make sense for
this degenerate P, but not in general, as is indicated by another example. Take
P uniform on [0,1]. Again, there are points closeby from where a population
could come back, but any neighbourhood also contains for instance probability
measures that are uniform on [y, 1],y € (0, 1), from which there is no return.

This leaves us with the topology induced by the Kullback-Leibler relative
entropy measure as the only remaining candidate. This is the strongest topology,
but we need not worry about that too much; the cases in which asymptotic
stability in the variational distance could also make sense are exactly those in
which variational distance vicinities and Kullback-Leibler vicinities are basically
equivalent.'!

9 LSy, = ASy

For showing that local superiority implies asymptotic stability in the Kullback-
Leibler relative entropy measure, it is convenient first to establish that if we start
at t = 0 in an out of equilibrium point @ (0), and watch the replicator dynamics
do what it does, that then the time derivative of the Kullback-Leibler relative
entropy measure at @ (t) equals —fp (Q) = — (v [P, Q] — v [Q, Q]), which will of
course prove to be a useful result. Observe first that

- log( E )dP(:r)ZO

Hp (Q f log(dpgmg)dP( o

and than that for @ with Hp (Q) < o0

F#HP(Q(t) = & [C(fp) log (4e2 ) aP ()

t=0,Q(x,0)=Q(z)

f dP m)%}%ﬁt (dQ (x,t)) dP (z)

t=0,Q(z,0)=Q(z)
f o dQ (x, ) (fA z,y) dQ (y,t ffA y,2)dQ (2,t) dQ (y, ))

I That is: for any vicinity of the one type, one can find a vicinity of the other that is
included in it.
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_ dP(z) x x
I dghaal t(fA Q) ~ [ [A (s )d@())

f(fA 2.9)dQ (y dyfffA(y, @(z)d@<y>) 4P () =
[ [Al ffA 1.2)dQ (2)dQ (4) = — (u[P.Q) — u[Q.Q)

Then we are set to prove that:

Proposition 9 If P is locally superior in the Kullback-Leibler entropy measure,
then it is asymptotically stable in the replicator dynamics (in the same measure).

Proof. The proof is the same as the proof of the similar theorem for the
finite case and can be found on page 100 in Weibull (1995). m

10 AS;; = LSy

The counterexample for the finite case of course still serves as an example
that this implication does not hold. For this distorted Rock Scissors Paper
game, I again refer to Weibull (1995), page 102.

4 Shocks, mutations and vicinities

Being correct is one thing, making sense is another. In the preceeding sections
we focussed completely on being correct proving or negating all kinds of the-
oretical implications, without really bothering to check whether the concepts
under examination actually have a sensible interpretation. Therefore I suggest
to reflect a little on what the theory aims to describe.

The reason why we are interested in those theorems is that they might help
us explain why we see certain strategies prevail in a population that is playing
a game. The composition of such a population might change over time and we
could see this evolution as a stochastic process with two ingredients: mutation
and selection. Following Weibull (1995) we chose an approach that disentangles
these two elements. As a selection process, we opted for the replicator dynamics
that describe for every possible starting point how the composition of the popu-
lation evolves under the influence of the relative succes of the different strategies.
Mutations on the other hand are not explicitly modeled, but the relatively small
shifts are supposedly being brought together in what we call neighbourhoods
for the finite action space and vicinities for the more general case. The central
concept is asymptotic stability and a strategy is said to be asymptotically stable
if there is a vicinity such that the replicator dynamics guarantee a pull back to
this strategy after any shift to a point in this vicinity. This concept is obviously
qualitative; a strategy is either stable or unstable and how stable a strategy is,
is not a question that this construct can help us answer. In other words, if we
know that there is a vicinity in which all shifts are neutralized by the selection

16



process we still do not know if this only works for a tiny vicinity and therefore
only for tiny shifts, or if the replicator dynamics also work as a piece of elastic
for giant leaps. The leading example of both Kandori, Mailath & Rob (1993)
and Young (1993) shows that this lack of discrimination can be unsatisfying.
Suppose we have a coordination game with one risk dominant strategy; take for
instance the game

10

A= 0 2|

A population is then determined by the share z; that plays the first strategy.
Now both x; = 1 and x; = 0 are asymptotically stable, but since the replicator
dynamics take all populations left from x; = % to the latter equilibrium, one is
tempted to say that this one is more stable than the other; the maximum shock
it can overcome is twice as big as for the first equilibrium. Taking different, but
explicit mutation processes, both Kandori, Mailath & Rob and Young look at
the limit case where mutation probabilities become arbitrarily small and they
both come up with another qualitative concept that does make a distinction
between the two equilibria from the example; Kandori, Mailath & Rob introduce
long run equilibria and Young defines stochastically stable states. One of their
main conclusion is that even though both equilibria are evolutionary stable
strategies, the process of mutation and selection spends considerably more time
near the risk dominant equilibrium and as mutation probabilities go to 0 the
limit distribution even puts probability 1 on this state.

The example shows that in the discrete case we need a specification of the
mutation process once we want to distinguish one asymptotically stable state
from another. Now if we turn to a continuous action space we need to be
precise about mutations before we even get to asymptotic stability. With a
finite action space the absence of a specific description of how mutations arise
does not hamper us defining asymptotic stability; there is only one candidate for
the type of set that should contain the smaller shifts. But in the continuous case
we have seen that there are different types of vicinities with different properties.
A decision on what type of vicinity is the most appropriate can only be taken
if we are a bit more precise about what mutations we consider likely.

The reason why we restict ourselves to vicinities anyway is that whatever
population state P we consider, we can always dream up shifts to population
states far out from which there is no return - for instance a shift to another
equilibrium or one that drives a set of actions into extinction that we cannot
ignore. However, if these shocks are very unlikely, we want our concept of
stability to disregard them. Therefore a vicinity would preferably be a slim
set that nonetheless captures the relatively likely transitions and we would like
to speak of a state @ as being close to P if and only if a shift from P to @ is
relatively probable. In Sections 2 and 3 we encountered three types of vicinities.
We also found out that one of them, the Kullback Leibler type, has a practical
advantage over the other two since it is the only type for which we can actually
prove anything with respect to asymptotic stability. Whether the only workable
type of asymptotic stability is also informative about a stochastic process of
mutation and selection remains to be seen though. In the remainder of this
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section we will compare the three options and I will not only argue that none of
them is perfect, but also that there is indeed some sense in using the Kullback
Leibler cross entropy measure. In order to make these comparisons we will first
concentrate on what kind shocks the different types of vicinities cover.

The Prohorov metric induces the most inclusive type of vicinity. In this
metric, unlike the others, two degenerate probability measures are as close as
the points in which they are degenerate. With good reason Oechssler and Riedel
(2000b) argue that this can capture quite realistic shifts; if we assume a game
with a pure equilibrium and a homogenous population that plays this equilib-
rium, one can imagine that a change in the environment changes the payoffs and
the equilibrium strategy just a little. In the after-shock situation, the whole pop-
ulation is just a little out of equilibrium and a good question is then whether it
will drift further away or move towards the new equilibrium. Now the bad news
is that - as we saw in Section 3, just before arrow 9 - homogenous populations
do not move at all in the replicator dynamics, so whatever likely transitions we
have added to our vicinities by using the Prohorov metric instead of for instance
the variational distance, these can never be included in useful theorems; no con-
ditions whatsoever can guarantee asymptotic stability in the Prohorov metric
unless they exclude those cases that make out the attraction of the metric. This
immobility certainly is a reason to doubt the appropriateness of an approach
that seperates mutation and selection with this kind of shocks, for one can very
well think of trajectories of the stochastic process that we aim to characterize
that do not suffer from this inertia. Assume for instance that we start off in a
completely mixed strategy with positive density on the whole action set and no
atoms. Now even if the replicator dynamics would converge to a degenerate dis-
tribution, it would never get there in finite time. All points along the way would
therefore still be distributions with positive densities on the whole action set, so
if the game and therefore the equilibrium slightly changes, nothing would stop
the process from starting to converge to the new equilibrium. Looking at the
discrepancy between the concept of asymptotic stability in the Prohorv metric
and what we expect from the actual process of mutation and selection we can
conclude that for this type of shocks our setting leads to a dead end.

Then we are left with only two candidates: the variational distance and the
Kullback Leibler cross entropy measure. If we confine ourselves to vicinities in
the variational distance we get a problem similar to the one we just saw in the
Prohorov metric. This problem does not occur anymore in population states
with finite support for there one can find vicinities that exclude extinction of
substantial parts with the variational distance. But for a distribution P with a
density the example in Section 3 shows that however small a vicinity one chooses,
as long as it is of the variational distance type, it will always contain states in
which too large a subset of the action space is extinct to allow for a return to
P. Let me refrase that formally. For any population state P that has a density
and for any € > 0 one can always find a population state () and a subset B of
the action space such that P (B) > 0,Q (B) =0 and dyq (P, Q) = €. This is not
the case for the Kullback Leibler cross-entropy measure. If B is a subset of the
action space S and P (B) > 0, then all probability measures in which all types
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in the set B are extinct are infinitely far away from B in the Kullback Leibler
cross-entropy measure and therefore not contained in any vicinity of P of this
type. One could therefore say that in the Kullback Leibler cross entropy measure
any population is extinction-by-mutation-proof and it is exactly this property
that allows us to define asymptotic stability in a meaningful way. Going from
a variational distance type vicinity to a Kullback Leibler type we apparently
cut away the extinction cases and we are to decide whether it indeed is right
to ignore these transitions. In order to be able to answer that question we will
give a finger excercise and two more elaborate models of mutation hoping that
these models point out a winner. But before we go on we should be aware that
no sensible model of mutations could ever serve as a straightforward motivation
for vicinities of the Kullback Leibler type. The fact that the Kullback Leibler
cross-entropy measure does not satisfy the triangle inequality disqualifies this
measure because I think anyone would agree that the transition probability from
P to @ should be bounded below by the probability of a route from P to
through R

For the finger excercise we will consider the simplest action space possible
and the most obvious mutation process. Our action space consists of two actions
and every member of the population has an equal probability of mutating. With
only two possible actions and N players, a state is described by the number of
players that play the first action. Assuming a fixed mutation probability p,
transition from a state x; into y; occurs with probability

min{z1,y2}

0 (a';nj )pn (1 - p)ml_n (1273;22+n)p:E2—y2+n (1 - p)yz_n lf Y1 2 T
n=

min{w2,y1}

0 ()p" (L =p)™™" (zl—a;ﬁn)pm_m A -p)T" if y1 <y
n=

where zo = N —xy and yo = N — 1

A method to make a perfect vicinity - slim but comprehensive - would be to
choose a set such that the transition probability to any point inside it exceed the
transition probability to any point outside this set. In this case that would make
a vicinity of a point 1 an interval (a, b) such that the transition probability from
x1 to any point inside this interval is larger than the transition probability from
x1 to any point outside this interval.!?> Following this procedure for a fixed
p and N, we get sets that are skewed towards the middle and the further z
is from the center, the more skewed its vicinities are.!> This is a bit like the
Kullback Leibler type vicinities. On the other hand, if we let p go to zero and N

127t would be especially nice if we could find a function f such that f (z1,¢) > f (z1,d) if
and only if the transition probability from x; to c is smaller than the one from x; to d.

B For xy # % there is a size € such that for vicinities smaller than € , 21 is not contained in
its own vicinity. This undesirable property is due to the autonomous drift towards the middle
that this model implies.
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to infinity, these vicinities converge to exactly those we get with the variational
distance.

Even in this simple model we can see why extinction-by-mutation proofness
can be a good thing. If a vicinity of x; contains a state in which one action
is extinct, then the selection process is merciless: return from this action is
impossible. This is the case even though mutation away from exctincion is the
most probable transition in the mutation process; the probability of going from
x1 = 0 to z; = 1 is an upper bound on all transition probabilities. Therefore
I would argue that if our concept of stability qualifies extinction as an absorb-
ing state of the selection process, even though the transition by mutation into
extinction is a lot less likely than the other way round, it might be better to
exclude the extinction cases from our vicinities. In this simple setting we could
do this for the variational distance by simply choosing a smaller vicinity of the
same type, but with a density on a continuous action space this no longer solves
the problem, as we saw. Here the Kullback Leibler cross-entropy measure helps
out.

Generalizing our finger excercise can render us a model of mutations. If we
divide the action space in m parts and let m go to infinity, this can be a way
to approach a continuous action space. Further assumptions are more or less
obvious: we assume that every member of the population has a small but fixed
probability P of mutating and that, given that it mutates, all actions - including
the original action itself - are equally likely to be drawn. The probability of a
transition from x = [z1, ..., Zm]| to ¥ = [y1, ..., Ym] then becomes:

m

T ()i o (N=XTL ) AN s
= {1 @pe= -« iy ()Y
2<y

where z < 2 if z; < z; Viand N = > " ;. If we want to be consistent
with the simple model we can replace p by —=p which makes p the probability
of mutating where all other actions are equally likely to be drawn if a player
mutates. Perfect vicinities can be made by comparing transition probabilities in
the same way we did in our simple model. The mutations cause a drift towards
the uniform distribution and if we want not to be troubled by such complica-
tions we can, for the sake of simplicity start off in a uniform distribution. Perfect
vicinities turn out to be somewhat between the vicinities we get from the vari-
ational distance and the Kullback Leibler cross-entropy measure, depending on
what p, m and N we choose.

M Of course exctinction should be an absorbing state in some cases; if one strategy is to be
a tiger and the other to be a rhino and the tigers become extinct, they will never ever return.
But this example does not exacly fit our model of mutation; we can hardly assume tigers
to mutate into rhinos and vice versa. Especially if we turn to the case where the two types
of vicinity really differ - distributions with a density - a continuous action space suggests a
mutation proces that would keep the carrier of an equilibrium strategy from lasting extinction.
For instance, one could think of an action space representing a players height or the moment
at which a flower opens or a preference parameter. In those cases one expects that a next
generations action is an imperfect copy of the action of a current generation.
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Using 37, (—1)""" () = 1 we can compute the probability that there is
an action that becomes extinct:

m ' N . m—i)N
LEVT ()T (=) T
For an m that is not too large compared to N this probability is small
compared to the probability of mutating away from extinction, even if we correct
for the shrinking share of distributions with extinction in the total set of possible
distributions. This could be used as an argument that lasting extinction can be
so improbable that we indeed justly disregard that possibility.

There are also other ways to look at how, in a model with a continuous
action space, large populations are approximated. Since populations in real life
will always be finite, however large they are, one can say that at a given moment
in time there is only a finite number of action being played, so in fact almost all
actions are extinct. Nonetheless, we can treat these actions as if they were drawn
from a distribution and what is more, if we assume that offspring of a player
playing action p plays an action that is for instance normally distributed with
expectation p and variance o2, where 02 is very small, the aggregate actions
of a next generation really is a distribution again. Such a model would be
rather hard to handle, but in this setting we need not have too much fear of the
absorbing character of extinction since the distribution of the action played by
a next generation always has a density over the whole action space.

This second model of mutations also solves the problem of extinction in a
case where the generalized finger excercise does not help. Consider for instance
the distribution P on [0, 1] that is given by its density f (z) = 2z and assume it
is an equilibrium. One can imagine that in our first setting the nearer an action
is to 0, the closer to 1 the probability of it becoming extinct is. Extinction by
mutation would therefore even be a very likely event. In this second setting
however the population state can very well float around the equilibrium, since
the crumbling away that once in a while occurs does not neccesarily make the
distribution of a next generations actions put probabilities on subsets of the
action space that are very much different from the one from which the current
generation is drawn.

Returning to the beginning of this section, one could argue that stability
of a dynamic process would at its best be a quantitave notion that tells us
how unlikely it is to depart from an equilibrium. It is not wide of the mark
to state that trying to catch it in a qualitative definition such as asymptotic
stability will never be a hundred percent satisfactory, which is even a little more
apparent with a continuous action space. On the other hand, after what can be
seen as a shortcut, we do arrive at a concept that makes some sense and that
certainly has a useful generality to it, since even if a quantitave approach would
render numbers at all, these would depend on size of the population, mutation
probabilities and the speed of the selection process. The only workable type

21



of asymptotic stability is constructed with the Kullback Leibler cross-entropy
measure and with different plausible models of mutation it is quite right in
ignoring the cases where mutation leads to irreversible extinction.

5 Adaptive dynamics

Another approach to tackle games with a continuous action space in an evolu-
tionary setting is taken by Hofbauer and Sigmund (1998). Their most important
assumption is that the population will be homogeneous at every point along the
timepath. This homogeneous population moves in the direction of the most
advantageous mutation (of course from the individual point of view). A formal
definition of the adaptive dynamics is

dx(t) _ A (y,x)

dt oy

y=z

where z and y are to be thought of as vectors, x (t) representing the strategy
the population plays at time ¢. A then needs to be differentiable and dzx (t) /dt
points in the direction of a vector h with length one that maximizes the expres-
sion A (x + eh,z)— A (z,z) for € — 0. Furthermore they allow for the possibility
of using other metrics than the Euclid metric, reflecting that some mutations
can be more likely than others.

Note that their model is to capture both mutation and selection, whereas
the replicator dynamics only focusses on selection. Homogeneous populations
therefore do not move at all in the replicator dynamics, whereas in the adaptive
dynamics there’s nothing but (moving) homogeneous populations. I think a
weak point of the adaptive dynamics is that it consists of no more than a
definition, without an a priori reason why this would be the correct dynamics
nor a specification of the mutation and selection proces that would (in the limit)
lead to such a dynamics. Doing so, it overlooks the possibiliy of heterogeneous
equilibria. For example, if we take S = [—m, 7] and A (z,y) = |sin (3 (z — y))|.
adaptive dynamics predicts no movement at all in any homogeneous population,
even though in any homogeneous population every mutation would do better
than the incumbent strategy.

A Appendix

In Section 2 we have, for different functions d, defined collections V (P) =
{V(P0)}ssg = {Q € P[S,B] | d(P,Q) < 6}5- of all vicinities of P for this
d. Here we will put these sets in their proper topological context. Possibly

superfluous, we first give a definition of a topological space and one of a neigh-
bourhood:

Definition 10 A topological space is a pair (X,T), with X a set and T a
topology, that is, a set of subsets of X that satisfies the following axioms
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1. 0, XeT
2. IfO; € TViel, then J;c; O€T
3. IfO1,...,0, €T, then(_, 0; € T

Definition 11 U is a neighbourhood of P € X if there is a O € T such that
reOcCU.

These are not the only possible definitions though; while we start with a
topology and define neighbourhoods after that, Sierpinski (1952) starts off with
a definition of neighbourhoods that is a very general version of what we called
vicinities and given certain restrictions on them he defines a topology to go with
these neighbourhoods. His definition of a topology actually requires more than
Definition 10 does, which is more or less standard nowadays; it for instance
includes the first separation axiom. This difference in definitions could be the
source of some confusion, as we will see.

A classic way of defining a particular topology on a set T is done by choosing
a function d : T x T — R{ and stating that O € 7 if and only if for all z € O
there is a § > 0 such that V (z,6) = {y € T|d(z,y) <6} C O. This d is
normally taken to be a distance, but that is not a necessity to make this define
a topology. Actually, any function will do, but not all functions induce useful
topologies, which we are also about to find out. The set on which we would
like to define topologies is the set P [S, B] of distributions on the action space
S. For the function d we choose the Prohorov distance, the variational distance
and the Kullback-Leibler cross-entropy measure and the topologies we get in
this way are denoted by 7, Tuq and Ty respectively. The first two are also
known as the weak and the strong topology and one is tempted to christen the
third as the very strong topology. The differences between the three topologies
are a little more subtle than the differences between the three sets of vicinities,
though the examples are basically the same.

To illustrate the difference between 7, and 7,4, we can take S =[0,1], P
degenerate in 0 and V = {Q € P[S,B] | dva (P,Q) < 1}. This is an element
of 7,4 because the variational distance is a distance.l® To see that it is not an
element of 7,,, take a look at the probability measures P, degenerate in y. For
all y € (0,1] we find that d,q (P, P,) = 2 where d,, (P, P,) = y. Therefore
none of these distributions P, are elements of V', even though any open set in
the topology induced by the Prohorov metric that contains P must also contain
some of these P,. More formally: d,q (P, P,) = 2 implies that P, ¢ V' Vy € (0,1]
and since for every 6 > 0 we can simply choose a y € (0,6), there is no 6 > 0
such that dp,. (P,Q) <6 =Q € V'V Q € P[S,B] and therefore V ¢ 7,,,.

The difference between 7,4 and 7j; is illustrated by taking S = [0,1], P
uniform on S and V = {Q € P[S,B] | dw (P, Q) < 1}, which is an element of

B That is: dyg (P,P) = 0,dyq (P,Q) > 0 for Q # P, and dyq (P,Q) + dyq (Q,R) >
dyq (P, R). The triangle inequality guarantees that open balls or vicinities as we defined
them are indeed open sets.
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Tp0. 10 Tt is not an element of 7,4 though; if we take distributions P, uniform on
[y, 1], we find that for all y € (0, 1) the Kullback-Leibler entropy di; (P, Py) = oo
while dyq (P, Py) = 2y. Obviously P, ¢ V for y € (0,1) and since for every 6 > 0
there is a P, , y € (0,1] with d,q (P, P,) < 6 there is, again, no ¢ > 0 such that
dva (P,Q) <6=Q eV VQeP[S,B] and therefore V ¢ T,q.

Together with the delimitations from section 2 this all boils down to 7, C
Toa C T

Now we finally come to the reason why we used sets of vicinities and not
topologies, which will take some ugly notation. First take the set of all possible
vicinities that come with a given function d. This can be written as

F= Upep[syg] V(P) where V(P)={V(P,0)}s.q and
V(P46 ={QeP[S,B] |d(PQ)< b}

A collections of this type is sometimes called a Frechét (V) space. Now we
will compare this to the topology we get in the way we mentioned above:

T={0|VQe035>0:V(Q,6={ReP[SB] |dQ R)<s CO}

If this function satisfies the triangle inequality, every element of F'is also an
element of 7; for every P € P [S, B] and every § > 0, any point @ in V (P,§) =
{QeP[S,B] | d(P,Q) < 6} has a vicinity of its own that is a subset of V' (P, §);
take V(Q,6 — d(P,Q)) ={RePI[S,B] | d(Q,R) <é— d(P,Q)}. For a func-
tion d that is not a proper distance, this is not guaranteed and indirectly Csiszéar
(1962, 1964) shows that for the Kullback-Leibler entropy, which indeed does not
satisfy the triangle inequality, not all vicinities are elements of the topology 7.
His result is actually even a bit stronger; there are probability distributions P
for which no vicinity V (P,6),6 > 0 is an element of 7. The counterexample
comes in the form of a probability distribution P and sequences of distribu-
tions {Qm},,cy and {Rm:n}n>m,m€N for which lim,, o dg; (P, @) = 0 and
limy, 00 Akt (Quns Rinyn) = 0 Y m but digg (P, Ry,n) = 00 ¥V my,n.

To be perfectly complete, we give the definition of a basis of a topology and
a neccessary and sufficient condition for a set to serve as a basis for a topology

Definition 12 Let (X,7T) be a topological space. A collection B is a basis for
T of

1. BCT
2. for every O € T there is a B’ C B such that O =B’

Theorem 13 Let X be a set and B a collection of subsets of X. Then there is
a unique topology T on X such that B is a basis for T if and only if

16The Kullback-Leibler cross-entropy measure is not a distance, but for this particular P
this vicinity is an open set;
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1. UB=X

2. for all B1,By € B and all x € By N By there exists a B € B such that
r€BC B NBy

The way Csiszar (1962, 1964) actually frases his result is that he claims that
F = pepis,sV (P) is not a basis for a topology. This is definitely true, since
from his counterexample V (P, 6),6 > 0 and V (Qu,€),€ > 0 could feature as
B; and B; and R, , for n large enough would be an = for which condition 2 is
not met. But if one reads the proofs of Csiszar or the article by Bomze (1991)
who refers to this result, one should be aware that Csiszar uses the definitions by
Sierpinsky (1952). As a consequence of his reversed procedure of defining what
topologies and neighbourhoods are and his stronger definition of a topology,
all these concepts are different from ours and cannot be interchanged. But
even though his theorems would not remain valid if one would replace what he
calls bases, topologies and neighbourhoods by what we chose for definitions, his
counterexample, as we saw, still shows where the shoe pinches / where the rub
is.
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