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Abstract
The paper considers the K-statistic, Kleibergen’s (2000) adaptation of
the Anderson-Rubin (AR) statistic in instrumental variables regres-
sion. Compared to the AR-statistic this K-statistic shows improved
asymptotic efficiency in terms of degrees of freedom in overidentified
models and yet it shares, asymptotically, the pivotal property of the
AR statistic. That is, asymptotically it has a chi-square distribution
whether or not the model is identified. This pivotal property is very
relevant for size distortions in finite-sample tests. Whereas Kleibergen
(2000) focuses especially on the asymptotic behavior of the statistic,
the present paper concentrates on finite-sample properties in a Gaus-
sian framework. In that case the AR statistic has an F -distribution.
However, the K-statistic is not exactly pivotal. Its finite-sample dis-
tribution is affected by nuisance parameters. Here we consider the two
extreme cases, which provide tight bounds for the exact distribution.
The first case amounts to perfect identification—which is similar to
the asymptotic case—where the statistic has an F -distribution. In
the other extreme case there is total underidentification. For the lat-
ter case we show how to compute the exact distribution. Thus we
provide tight bounds for exact confidence sets based on the efficient
K-statistic. Asymptotically the two bounds converge, except when
there is a large number of redundant instruments.
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1 Introduction

Instrumental variables inference can be affected rather strongly by the quality

of the instruments. Especially in the presence of weak instruments usual

inferential procedures such as likelihood based Wald, Likelihood Ratio and

Lagrange Multiplier tests may show considerable size distortions and the

performance of confidence sets may be abysmally poor, see e.g. Nelson and

Startz (1990), Staiger and Stock (1997), Zivot et. al. (1998), and Hausman

and Hahn (1999). However, an exact test in a Gaussian context has been

provided by Anderson and Rubin (1949). The resulting Anderson-Rubin

(AR) statistic is pivotal and has an F -distribution, which does not depend on

nuisance parameters and is not affected by the degree of underidentification.

However, the AR statistic has a limiting chi square distribution with a

number of degrees of freedom that equals the number of instruments. This

number exceeds, or equals, the number of structural parameters, which af-

fects the power of the test statistic. As has been shown by Kleibergen (2000)

it is possible to construct a statistic, the K-statistic, with similar asymp-

totic pivotal properties but with a limiting chi-square distribution that has a

number of degrees of freedom equal to the number of structural parameters.

Thus, the K-statistic has an asymptotic distribution with a minimal number

of degrees of freedom without being hampered by a poor performance close to
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points of underidentification, as is the case for the more traditional inference

procedures. This conclusion can be drawn with respect to the asymptotic be-

havior of the test statistic. Kleibergen (2000) does not provide finite-sample

evidence. Here we do consider finite sample properties.

Under Gaussianity the AR statistic has an F -distribution and thus pro-

vides an exact finite-sample test. The K-statistic has a finite-sample distribu-

tion that depends on nuisance parameters. It does thus not provide an exact

test. Based on the asymptotic pivotal behavior, we, however, expect the

asymptotic distribution to provide an accurate approximation of the exact

finite-sample distribution but we do not know the degree of accuracy. There-

fore, we compute bounds for the exact distribution of the K-test statistic by

assuming Gaussian distributions for the disturbances.

We find on one extreme—provided by the case of perfect identification—

an F -distribution, similar to the distribution of the AR statistic, albeit with

fewer degrees of freedom. On the other extreme—provided by the case of

total underidentification—we find a distribution that is complicated analyt-

ically, but can be simulated easily. That is, both extreme distributions can

be computed in practice. We show that these extreme cases provide tight

bounds. In many practical cases the two bounds are very close indeed, as

we might expect based on the asymptotic pivotal property of the statistic.

However, in case of many redundant instruments, the bounds may differ even
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asymptotically. In fact, we also compute the limiting distribution in this case

by means of the many-instruments asymptotics as described in Bekker (1994).

We find it to be different from the large-sample chi-square distribution.

The paper is organized as follows. In Section 2 we describe the model

and discuss briefly the AR statistic. The K-statistic is discussed in Section

3. The computation of its distribution, based on simulations, is described in

Section 4. The proof of the tightness of the bounds is given in an Appendix.

Section 5 provides some Monte Carlo computations.

2 The Model and the Anderson-Rubin Statis-

tic

Consider a classical instrumental variables regression model in a cross-section

context. That is, let

y = Xβ + ε, (1)

X = ZΠ + V, (2)

where Z is an n×k matrix of full column rank that consists of the nonstochas-

tic instrumental variables and X is n ×m, which may contain endogenous

as well as exogenous explanatory variables. The latter are assumed to be
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columns of Z as well and m ≤ k. If interest is restricted to those elements of

the parameter vector β that relate to the endogenous explanatory variables,

the instruments in Z might be separated into two parts. For ease of exposi-

tion we will not do this and consider the m-vector β as a whole. We assume

the rows of (ε, V ) to be independently normally distributed with zero mean;

we denote the covariance matrix by Σ.

Let, in general for a matrix H of full column rank the projection matrix

be denoted by PH = H(H ′H)−1H ′. Consider the quantity

AR(β) =
(y −Xβ)′PZ(y −Xβ)

(y −Xβ)′(In − PZ)(y −Xβ)
. (3)

Minimizing AR(β) over β provides the LIML estimator. However, we are

not concerned with estimation but with testing. If the argument in (3)

equals the true β, then y −Xβ = ε and the numerator and denominator of

(3) have independent chi-square distributions with k and n − k degrees of

freedom, respectively. So, when multiplied by (n−k)/k, AR(β) has an Fk,n−k-

distribution. An exact test of H0: β = β� is found by verifying whether or not

AR(β�) has a small enough p-value in the Fk,n−k-distribution. The resulting

test is exact and known from Anderson and Rubin (1949). Notice that the

AR-statistic has an F -distribution whether or not the model is identified.

That is, even if Π has a deficient column rank AR(β) will be distributed as
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an Fk,n−k random variable. This shows that it is a pivotal statistic.

Although the AR-test is exact under Gaussianity, it may have poor power

if the number of instruments k exceeds the number of explanatory variables

m. That is, in the numerator of (3), y − Xβ is projected on the full space

spanned by Z. We know, however, that, if β deviates from the true value, the

mean of y −Xβ is located in the subspace spanned by ZΠ. The problem is

then that we do not know Π. Still, the dimension of the space onto which we

project y −Xβ can be reduced in a way that preserves the pivotal property

of the statistic asymptotically.

3 Removing redundant degrees of freedom

from the AR Statistic

Consider a regression of the columns of V on ε. That is, let

V = ελ′ +W, (4)

λ =
σV,ε

σ2
ε

, (5)

where W is independent of ε; and σV,ε and σ2
ε denote the covariance of V

and ε and the variance of the latter, respectively. Consequently, X − ελ′ =

ZΠ +W , is like Z independent of ε but has a smaller column dimension. If
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λ were known, we could replace the projection matrix PZ in the numerator

of (3) by PX̃ , with

X̃(λ) = PZ(X − (y −Xβ)λ′). (6)

For the true value of β, X̃(λ) is stochastic independent of ε. Thus, this adap-

tation of the AR statistic would still be pivotal, but now distributed, when

multiplied by (n − k)/m, as Fm,n−k. Of course, λ is unknown. However,

Kleibergen (2000) uses simply a consistent estimator of λ that is stochas-

tic independent of Z ′y and Z ′X under the null where β is specified. This

estimator, λ̂, is specified as in (4) with σV,ε and σ2
ε replaced by

σ̂V,ε =
X ′(In − PZ)(y −Xβ)

n− k
,

σ̂2
ε =

(y −Xβ)′(In − PZ)(y −Xβ)

n− k
. (7)

The resulting K-statistic is given by

K(β) =
(y −Xβ)′PX̃(λ̂)(y −Xβ)

(y −Xβ)′(In − PZ)(y −Xβ)/(n− k)
. (8)

Asymptotically, it is distributed as a chi square with m degrees of freedom.

Further discussions are given by Kleibergen (2000).
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4 Bounding the Finite-Sample Distribution

Although the asymptotic distribution of (8) is simple, the finite-sample dis-

tribution is more complicated. In fact, it depends on nuisance parameters. In

this section we will analyse this dependency and show that the distribution

can be bounded by distribution functions that do not depend on unknown

parameters.

As the denominator of (8) is given by σ̂2
ε, we find that the statistic (8)

results from projecting the first column of the following matrix onto the space

that is spanned by its last m columns:

PZ (y,X)

 1 0

−β Im


 σ̂−1

ε − σ̂′
V,ε

σ̂2
ε

0 Im

 = (0, ZΠ) + PZ (ε, V )

 σ̂−1
ε − σ̂′

V,ε

σ̂2
ε

0 Im

 .

(9)

In order to be able to simulate the distribution of K(β), we define a matrix

(ε̃, W̃ ) as follows

(ε̃, W̃ ) =

(
ε

σε

,WΣ
−1/2
W

)
,

where W has been defined in (4) and ΣW denotes the covariance matrix of

its rows. We note that the matrix (ε̃, W̃ ) has independent standard normally
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distributed elements. We define their estimated variance and covariance by

σ̂W̃ ,ε̃ =
W̃ ′(In − PZ)ε̃

n− k
,

σ̂2
ε̃ =

ε̃′(In − PZ)ε̃

n− k
.

The second term in (9) can now be expressed as follows

PZ (ε, V )

 σ̂−1
ε − σ̂′

V,ε

σ̂2
ε

0 Im

 = PZ

(
ε̃, W̃

) σε
σ′

V,ε

σε

0 Σ
1/2
W


 σ̂−1

ε − σ̂′
V,ε

σ̂2
ε

0 Im


= PZ

(
ε̃, W̃

)
(

σ̂ε

σε

)−1 σ′
V,ε

σε
− σεσ̂′

V,ε

σ̂2
ε

0 Σ
1/2
W


= PZ

(
ε̃, W̃

) σ̂−1
ε̃ − σ̂′

W̃ ,ε̃

σ̂2
ε̃

0 Im


 1 0

0 Σ
1/2
W

 ,

(10)

where the last equality follows from

σ̂W̃ ,ε̃ =
Σ

−1/2
W

σε

σ̂W,ε

=
Σ

−1/2
W

σε

(
σ̂V,ε − σ̂2

εσV,ε

σ2
ε

)
,

σ̂2
ε̃ =

σ̂2
ε

σ2
ε

.
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Consequently, the K-statistic K(β) is given by

K(β) =
ε̃′PX̃ ε̃

σ̂2
ε̃

(11)

X̃ = PZ

(
W̃ − ε̃

σ̂′
W̃ ,ε̃

σ̂2
ε̃

)
+ ZΠΣ

−1/2
W . (12)

If the matrix ΠΣ−1/2 were known, the distribution of K(β) could be simu-

lated, since (ε̃, W̃ ) can be simulated, as they have a standard normal distri-

bution. However, the matrix ΠΣ
−1/2
W is not known. Still we can distinguish

between two extreme cases.

One extreme case is given by total underidentification: Π = 0. In this

case the distribution can be simulated easily. The distribution depends only

on the dimension parameters k, m and n.

Another extreme case is when Π = θΠ
�
, where Π

�
is fixed and the scalar

θ grows to infinity, θ → ∞. In the latter case PX̃ converges in probability

to PZΠ and so the distribution of K(β)/m converges to Fm,n−k. These two

extreme cases in which we can construct the exact distribution of K(β)/m

can be shown to give upper and lower bounds on the exact finite sample dis-

tribution of K(β)/m. This results since as |θ| increases, then K(β) decreases

stochastically, i.e. the distribution function moves to the left. Intuitively,

this can be understood by noticing that ε̃ is correlated with the variables in

X̃. A more formal justification is given in the Appendix.
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The above implies that we can compute bounds for the finite-sample dis-

tribution of the K-statistic using simulation. Conservative tests or confidence

sets can be based on the critical value found for the distribution simulated

at Π = 0. However, if n is large then σ̂Ŵ ,ε̂ is small, in probability, and the

correlation between ε̃ and X̃ becomes negligible. In that case the bounds are

very close. Indeed, if n→ ∞, then K(β)
A∼ χ2

m, see Kleibergen (2000).

Would this limit distibution also provide an accurate approximation if

there are many redundant instruments? In order to answer this question we

consider the limit distribution of K(β) for an asymptotic parameter sequence

where the number of instruments increases with the number of observations:

k/n→ α > 0.

For the lower bound we found a finite-sample distribution given by Fm,n−k.

Clearly, the lower bound converges to a χ2
m-distribution whether or not α > 0.

For the upper bound, where Π = 0, we can use the following limits, which

can be easily verified.

σ̂2
ε̃

p→ 1,

σ̂W̃ ,ε̃

p→ 0,

W̃ ′PZW̃/k
p→ Im,
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ε̃′PZ ε̃/k
p→ 1,

W̃ ′PZ ε̃/k
p→ 0,

so

X̃ ′X̃/k
p→ Im. (13)

Furthermore,

W̃ ′PZ ε̃/(k
1/2)

A∼ N (0, Im),

(n− k)1/2σ̂W̃ ,ε̃

A∼ N (0, Im),

so

X̃ ′ε̃/(k1/2)
A∼ N (0, (1− α)−1Im). (14)

Consequently, we find for the upper bound, where Π = 0,

(1 − k/n)K(β)
A∼ χ2

m, (15)

which holds whether or not α > 0. In particular if α > 0 we find a simple

difference between the asymptotic upper and lower bounds. The difference is

of order k/n. These practical results are confirmed numerically in the next

section.
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5 Monte Carlo Results

To determine the applicability of the bounds on the exact distribution of

K(β), we construct the bounds for m = 1 and a few values of k and n.

Figures 1 to 7 show the lower and upper bounds on the exact distribution

function of K(β)
m

(8). The figures show a considerable difference between the

lower and upper bound, when k/n is large. When k/n gets smaller, the differ-

ence decreases and becomes negligible, as expected. The figures also contain

a limiting approximation of the upper bound. Instead of the asymptotic

approximation χ2
m

m
, based on (15), we used the Fm,n−k distribution, which is

more accurate in small samples and more convenient as well, since it is also

used for the lower bound. The figures show this limiting approximation is

accurate even for small values of n. Hence, it suffices to use critical values

from the Fm,n−k distribution both as lower bound and, by multiplying them

by 1/(1− k/n), as upper bound of the exact critical values of K(β)
m
.

12



0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 10,
k = 5 and m = 1.
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Figure 2: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 25,
k = 5 and m = 1.
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Figure 3: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 25,
k = 10 and m = 1.
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Figure 4: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 50,
k = 10 and m = 1.
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Figure 5: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 100,
k = 10 and m = 1.
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Figure 6: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 100,
k = 25 and m = 1.
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Figure 7: Lower bound (—) and upper bound (- -) and limiting approxima-
tion of upper bound (...) of the distribution function of K(β)/m for n = 100,
k = 50 and m = 1.
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Appendix

In order to prove the assertion in Section 4 that K(β) is stochastically de-

creasing in |θ|, where Π = θΠ
�
, we first condition on (In − PZ)(ε̃, W̃ ). This

does not affect the distribution of PZ(ε̃, W̃ ). Let

H = (Z ′Z)1/2Π
�

Σ
−1/2
W ,

u = (Z ′Z)−1/2Z ′ε̃,

U = (Z ′Z)−1/2Z ′(W̃ − ε̃λ̃
′
),

λ̃ =
σ̂W̃ ,ε̃

σ̂2
ε̃

.

We may regress u on U so that u = Uγ + ν, where ν is independent of U .

Next we also condition on U and consider the numerator of K(β) given by

ε̃PX̃ ε̃ = (Uγ + ν)′PL(Uγ + ν),

L = Hθ + U.

Let Q be an orthogonal m ×m dimensional matrix such that Uγ is orthog-

onal to the last m − 1 columns of L(L′L)−1/2Q, such that it has a posi-

tive inner product with the first column: (γ′U ′PLUγ)
1/2. Furthermore let

ξ = Q′(L′L)−1/2L′ν, whose elements are independently normally distributed,
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then

ε̃PX̃ ε̃ = (Uγ + ν)′L(L′L)−
1
2QQ′(L′L)−

1
2L′(Uγ + ν)

=
[
Q′(L′L)−

1
2L′(Uγ + ν)

]′ [
Q′(L′L)−

1
2L′(Uγ + ν)

]
= (ξ1 + (γ′U ′PLUγ)

1/2)2 +
m∑

i=2

ξ2
i .

Consequently, we only have to show that, conditional onU , (ξ1+(γ′U ′PLUγ)
1/2)2

stochastically decreases as |θ| increases. Here we find an analogy with the

non-central χ2 distribution that decreases as the non-centrality parameter

decreases. So we only have to prove that the non-random function

γ′U ′(Hθ + U) {(Hθ + U)′(Hθ + U)}−1
(Hθ + U)′Uγ

decreases as |θ| increases. This can be shown to hold true by considering the

derivative with respect to θ, which completes the proof.
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