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Abstract

Conventional economic models of traffic congestion assume that the relation between traffic
flow and speed is a technical one. This paper develops a behavioural model of traffic
congestion, in which drivers optimize their speeds by trading off time costs, expected accident
costs and fuel costs. Since the presence of other drivers affects the latter two cost components
and hence the Nash equilibrium speed, a ‘behavioural’ speed-flow relationship results for
which external congestion costs include expected accident costs and fuel costs, in addition to
the time costs considered in the conventional model. It is demonstrated that the latter in fact
even cancel in the calculation of optimal congestion tolls. The overall welfare optimum in our
model is found to be off the speed-flow function, and off the average and marginal cost
functions derived from it in the conventional approach. This full optimum requires tolls to be
either accompanied by speed policies, or to be set as a function of speed. Using an
empirically calibrated numerical simulation model, we illustrate these qualitative findings,
and attempt to assess their potential empirical relevance.
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1. Introduction

Road traffic congestion is among the most widely studied externalities in the economic
literature (for overviews, see Small, 1992; and Lindsey and Verhoef, 2000). This interest is
motivated by the importance and immediate visibility of traffic congestion in most cities, and
the growing interest of authorities in applying economic principles — i.e. road pricing — for its
regulation (e.g. Small and Goémez-Ibafiez, 1998). Traffic congestion in reality is a complex
phenomenon. It is the result of — and in turn affects — the dynamic behaviour of and
interactions between many road users. For reasons of tractability, most economic models rely
on greatly simplified representations of this complex reality. This is especially true for the
conventional static economic model of traffic congestion, which uses cost curves derived
directly from the speed-flow relation. Although well suited to illustrate the economic
principles of traffic congestion and congestion pricing, it may miss out on other important
aspects that may strongly affect the nature of optimal congestion tolls, and the welfare gains
that can be achieved using these. This was illustrated convincingly for instance by Vickrey’s
(1969) dynamic model of traffic congestion, extended in various directions by Arnott, De
Palma and Lindsey (1994, 1998) — the so-called bottleneck model.

Besides assuming stationary traffic conditions, however, the conventional model
makes more potentially far-reaching simplifying assumptions. The one of concern in the
present paper is that the underlying speed-flow function is a purely technical relation, that can
be taken as given when evaluating the welfare properties of free-market and optimal
equilibria. We develop a model for congested highway traffic that does not treat the speed-
flow relation as a technical law, but instead as resulting from road users’ optimizing
behaviour. Specifically, we assume that road users choose an optimal speed given the
situation on the road, so as to minimize generalized travel costs. This involves a trade-off
between time costs and expected accident costs, which both vary with the speed chosen. Since
accident risks, and individual drivers’ responses to these through speed choice, are determined
by the presence and behaviour of other drivers, the model endogenously generates traffic
congestion as the result of individuals’ optimizing behaviour. It thus integrates three aspects
of travel behaviour that are often studied separately: speed choice, safety and congestion
(moreover, also fuel costs are included in the numerical version of the model). Our approach
thus incorporates the obvious but often ignored observation that people slow down in traffic
congestion for a good reason, namely that otherwise accident risks would become excessive,
and tries to assess the implications for congestion policies from an economic perspective.

Our analysis builds upon that of Rotemberg (1985), in which road users choose
optimal gaps between their own and their leaders’ cars, taking the leaders’ speeds as given. In
our model, road users instead choose a speed, taking the traffic density as given. Our analysis
furthermore differs from Rotemberg’s (1985) in that it derives the optimal ‘flat’ (speed-
independent) toll and discusses the difference with congestion tolls as derived in conventional
models, considers the first-best optimum of a joint toll and speed policy explicitly
(Rotemberg, 1985, studies the analytics of optimal speed regulation alone), discusses the
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relation between the behavioural model and observed speed-flow functions and shows how
the latter would follow from the former, derives explicitly that the first-best optimum is off
the conventional speed-flow function (which is implicit in Rotemberg’s (1985) analysis), and
presents an empirically calibrated numerical simulation model.

2. An analytic model
2.1.  Introductory remarks

The conventional static economic model of traffic congestion is rooted in the works of Pigou
(1920) and Knight (1924). The relevant average and marginal cost curves are derived from a
‘technical’ relationship between traffic flow and speed, analogous to the technical cost curves
derived from production functions in the microeconomic theory of the firm. The speed-flow
relationship is thus regarded as a reflection of what may be called ‘traffic or congestion
technology’ (Small, 1992). This approach has the advantage that the speed-flow curve can be
measured, and hence provides an empirical starting point for the economic analysis of
congestion (see for instance Keeler and Small, 1977, or Boardman and Lave, 1977, for
examples of empirical examinations of the speed flow relationship). Even though this
approach is common, it may be questioned whether it is entirely adequate for the purpose of
an economic analysis of congestion externalities. If the speed-flow relationship is not a
technical relationship, but determined by driver behaviour instead, it may not be invariant to
changes in the environment in which the drivers determine their behaviour. We develop a
model to investigate whether this is the case, and if so, which economic policy and welfare
implications arise from a ‘behavioural’ instead of a ‘technical’ speed-flow relation.

The following assumptions are made. We consider traffic on a single, uniform
unidirectional road. Road users are homogeneous with respect to all generalized cost elements
of a trip. Apart from enhancing tractability, this homogeneity assumption has the conceptual
advantage that the results we obtain, including those relating to speed regulation, are valid
also when road users have the same (desired and actual) speeds — the case for which these
results are in fact more surprising than when heterogeneity in speeds would exist. Road users
may differ with respect to their willingness to pay for making a trip, so that the aggregate
(inverse) demand function is generally not perfectly inelastic. A stable demand function
applies, meaning that with a constant equilibrium level of generalized costs, trips will be
made at a constant rate. Only equilibria with stationary traffic conditions will be considered,
in which speed, density and flow are constant over time and along the road. The choice for a
static model is primarily motivated by its tractability, but also by our desire to compare the
results to those of the conventional static model of traffic congestion.

If the (endogenously derived) generalized average cost function exhibits a backward-
bending section, the demand function is assumed to be such that there exists an intersection
with the ‘normally congested’ upward-sloping segment — as opposed to the backward-
bending, ‘hypercongested’ segment (see Section 3 below; and also Verhoef, 1999, 2000).
Based on the argumentation provided in these same two papers, we will furthermore ignore
the possibility of ending up in a hypercongested equilibrium on our homogeneous road. As
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we will not derive the dynamic instability of these hypercongested equilibria underlying this
dismissal explicitly in this paper, we postulate it as an assumption here. The motivation is that
we wish to concentrate on the insights that our model yields for the ‘normally’ congested
segment of the cost function, the nature and analytics of which has been under economic
debate far less than the hypercongested range (see for instance McDonald et al., 1999).

Road users can make two decisions. The first is whether or not to use the road, which
will be done when the equilibrium generalized cost of travel (including a toll) does not exceed
the individual’s benefits from making a trip. Secondly, when using the road, an individual (7)
can choose at which speed (s') to drive. Individual road users are atomistic, and take
aggregate variables as given. These include the speeds chosen by all other drivers (S will
denote the average speed of all drivers, with a zero variance in a symmetric Nash
equilibrium), the flow of traffic (F), and traffic density (k). For density, this means that it is in
fact assumed that frictionless overtaking is in principle possible, although it will of course not
occur in a symmetric Nash equilibrium with equal speeds. Only with overtaking possible, a
driver exhibiting Nash behaviour does not believe she could create a structurally lasting larger
gap to the car in front (the leader in car-following terminology) by slowing down, and that she
could thus affect (local) density. Starting in a stationary state, a driver i that slows down and
chooses a speed s’ <S~' (with S~ denoting the equilibrium speed of all other drivers)
expects she will be overtaken at a constant rate of k£ [{S™ —s') vehicles per unit of time, and
therefore to experience a constant average local density of &, as well as time-averaged gaps to
both the leader and the follower equal to 1/k. Therefore, the individual does not believe she
can affect k by changing speed (nor in any other way).'

Although we endogenize the trade off between travel times and expected accident
costs in the determination of equilibrium speeds, we ignore that in a symmetric Nash
equilibrium with equal speeds on a unidirectional road, accidents are strictly speaking
impossible. The speeds we use should therefore in fact be interpreted as ‘average speeds’ (i.e.,
over an individual’s entire trip). The ‘human factor’ that causes the actual fluctuations in this
average speed during the trip, which in turn — with equal average speeds for all road users —
increases the probability of a collision above the zero level, is not modelled explicitly.

' The assumption of road users taking density as given may seem inconsistent with car-following theory (as
applied by, for instance, Verhoef, 2000), where drivers choose both a speed and a distance to the leader. We
emphasize that our present model concerns stationary state equilibria with constant speeds only, whereas car-
following theory is relevant primarily for the case where speeds vary during a trip. Note in particular that the car-
following model of Verhoef (2000) predicts stationary states in which speeds are constant for the entire (or most
of the) trip, with equal spacing between vehicles. Our model would concern constant-speed regimes of such a
car-following model, and the assumption would mean that in such a regime, an individual user does not believe
she can (and indeed could not) create a lasting lower density in his direct vicinity than that applies on average.
Note also the difference between our model and Rotemberg’s (1985), in which each driver is assumed to choose
a (constant) gap between him and his leader, taking his leader’s speed as given. As will become clear, our
qualitative policy implications are nevertheless consistent with Rotemberg’s (1985).
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2.2.  Generalized costs and speed choice in a symmetric Nash equilibrium

To determine equilibrium speed choice, we now turn to the generalized costs of travel. We
postpone the consideration of fuel costs to the empirical model of Section 3, and consider the
case where an individual i’s total travel costs for a trip, c', consists of the sum of time costs

i
ctime

we will not develop a full-fledged dynamic model that could for instance describe drivers’

and expected accident costs ¢’ . Because of our interest in stationary state traffic only,

changing speeds during their trip. Instead, we consider speed choice when drivers are forced
to have a constant speed during their trip, which they can, however, freely choose based on
perfect information on the traffic conditions that will be encountered.

The time costs depend exclusively on the speed chosen by the individual, s'. The
expected accident costs depend on more factors. For a given density of vehicles, both the
probability of an accident and its severity can be expected to depend on one’s own speed s’
and on the average speed of all other drivers on the road, S™'. Furthermore, before having
established that the Nash equilibrium will be symmetric, it is reasonable to assume that also
the variance of all other drivers’ speeds, var(S™), would matter when speed differences
increase the probability of an accident. Finally, given the prevailing speeds, the probability of
an accident is likely to depend on the average density of vehicles on the road, &, as £k is a
measure for both the number of potential ‘partners’ for a collision, and for the number of cars
over which a driver should divide attention (we ignore the effects of any possible dispersion
of k along the road upon travel costs). Note that the expected accident cost need not be zero if
k=0: also collisions with fixed objects alongside the road may be possible. We thus obtain:

¢ = el () +el (s'3S 7 var(S ), k) (1)

We assume that ¢, and c'  are twice differentiable in all arguments. We will now make a

time acc

number of assumptions stipulating how ¢’ depends on its various arguments.

We assume that travel time cost ¢!, is a decreasing convex function of s’, and the

time

associated curve gets infinitely steep when s’ approaches zero and becomes flat when s’ gets
high:*
ac!

—me_ < () 2a
% (2a)
62 i_
e >0 (2b)
Os'
oc’.
Ctu;ze = —0 (2C)
Os' |,
s'10
oc’.
tlﬂ'le e 0 2d
Os' o d)

* For convenience we ignore that a physical upper limit on s’ would theoretically be given by the speed of light.
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It is assumed that the expected accident cost ¢! is convex in s', and that there always exists
arange of s' for which ¢! _ increases in s' (the latter assumption is plausible for all s* when
k=0, and otherwise only when driver i does not drive too slow compared to S, in which case
speeding up might decrease expected accident costs by reducing speed differences):

oc’

Os' : ﬁ >0 (2e)
2 i

aaciazcc >0 (29
N

It is now straightforward to characterize a driver’s speed choice. Minimization of (1) with
respect to s’ implies that, given the levels of the aggregate variables, the marginal impact of a
speed adjustment on time cost should be balanced by that on accident cost:

a_d = M + ai =0 (3)
Os'"  0s' Os'
which requires that dc’ /ds' >0 at the optimum speed. Assumptions (2a)-(2f) imply that
there exists a unique positive solution to (3) for given values of the aggregate variables when
dc! /0s' <o for s' =0, as we will assume. This means that we discard zero-speed
equilibria. All densities & to be considered in the sequel are therefore below a certain possible
jam density #“" that would possibly make a zero speed, and infinite travel time costs, optimal.
The next question involves existence and uniqueness of a Nash equilibrium in the
model. The first thing to observe is that, because drivers are identical and atomistic, and hence
face the same values of the aggregate arguments in their cost function, any Nash equilibrium
must be symmetric: all drivers choose the same speed. This means that we can ignore
situations in which var(S™) is positive when looking for such equilibria. We therefore ignore
the term var(S™') in what follows, and replace equation (1) by:

c'=c (s")+c (s';87,k) 4)

time acc

To prove existence and uniqueness of a Nash equilibrium, we introduce two additional
assumptions that concern the effect of a change in the driver’s own speed on accident costs in
situations when the speed difference with all other drivers remains constant. A change in the
driver’s own speed implies a change in the speed difference with all others. The effect of the
change in speed difference on expected accident cost may be positive (if the speed difference
increases) or negative (if it decreases). However, it seems reasonable to assume that if we
remove this effect (by keeping the speed difference constant), accident cost will still be an
increasing and convex function of the driver’s own speed. This can be stated formally as

follows:*

* If the changes in s’ and S” are equal: ds'=dS'=dS. Taking the total differential of accident cost and imposing the
condition that dc,./dS must be positive gives (2g). Next, (2h) follows from assuming that dc,../dS increases in
the ‘joint’ speed.
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oc' oc'

aC.‘C + aCC.’ > 0 2
s’ 8" )
0 P , % H, (2h)
Os' 0s' oS™

It is shown in the Appendix that these additional assumptions guarantee the existence of a
unique Nash equilibrium. As explained, in a Nash equilibrium all drivers must have the same
‘joint’ speed S. We will now show that the equilibrium speed is the one that minimizes travel
cost (4) over S(=s' =S87) (still treating k as given), provide the mild assumption is added
that the expected accident cost for a driver with a given speed s' is minimized over S~ when
speed differences are minimized and S~ =s' holds. Individual cost minimization implies that
the cost function will be minimized over s', but of course not necessarily over the joint speed
S. To demonstrate that this will be the case, we define a function ¢(S,k) as follows:

o(S,k)=ci(s' =8,87 =S,k (5)

A symmetric Nash equilibrium must be a point on this curve, and we are now interested in the
question of whether the minimum of ¢(S,k) is such an equilibrium for a given &, and whether it
is a unique Nash equilibrium. First, assumptions (2g) and (2h), together with (2a)-(2d) ensure
that ¢(S,k) has a unique minimum with respect to S for a given 4. In this minimum:

oc dc¢'  oc
= +

0S os' 0S”

Individual cost minimisation implies that in a Nash equilibrium, dc’ / ds’ =0 (compare (3)).
For (6) to be valid in equilibrium, we must therefore also have dc’ / 0SS~ =0. This is the case
if accident costs, for a given k and s’ and considered as a function of S, is minimized if
speed differences are minimized and all other drivers set their speeds equal to s'. This seems
a reasonable condition, and it can be stated formally as an additional assumption on the
properties of the cost function (4):

e g if 57 = i)
s~
9%c! ,
e > () (2)
s~

Figure 1 illustrates the unique symmetric Nash equilibrium that is obtained under assumptions
(21) and (2j). The figure shows in bold the ¢(S,k) from equation (5) as a function of S for a
given k. Furthermore, it shows the individual driver’s cost function ¢'(s';S™, k) as a function
of s' for three values of S (still for the same, given k): S (k), which is defined as the joint
speed S that minimizes ¢(S,k); S*, which is lower than S*(k); and S, which is higher than
S“ (k). Finally, the figure identifies the individual driver’s optimal response to each of these
values of S™, s'(S™,k), as the speed s’ that minimizes ¢'(s';S™, k).

It follows from (2i) and (2j) that for a given S~ and k, ¢'(s';S ™', k) is at least as large
as c(S=s',k) = c'(s';8™ =s',k), and that the values are equal only when S~ =s'. In
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other words: a driver choosing a speed s’ under a density & will experience the lowest
possible costs only when other drivers also drive at a speed S~ =s'. As a consequence, for
any given S~ and k, the curve ¢'(s';S™, k) as a function of s’ will touch the function c(S,k)
at S =8~ without crossing it.

c,c
ci(s’;St,k)

ci(s’;SH.k)

Ci(s;S%9k) c(S.k)

s S S

st Sea(k) = SH
s'(Stk) s'(Se9(k),k) S'(SH k)

Figure 1. A symmetric Nash equilibrium for speed choice

Figure 1 illustrates why, as a result, S/ (k) is the unique symmetric Nash equilibrium. First,
it is a Nash equilibrium because the strict convexity of ¢(S,k) with respect to S, combined with
equations (2i)-(2j), implies that defecting would certainly raise an individual’s ¢’ 4 The
individual’s optimal response s (S*(k),k) is therefore S (k). Secondly, it is symmetric
because this is true for all drivers. Third, it is unique because both ¢’ is assumed to be twice
differentiable. As explained, equations (2i) and (2j) imply that ¢'(s';S ™, k) must be tangent
to c(S™ k) for s =S, which implies that for S~ # 5 (k), ¢'(s';S ™, k) then obtains its
minimum for s’ >S~ when S~ <S%“(k), and for s' <SS~ when S~ >S% (k). In other
words, s (S*,k) > S" when S*is lower than S*(k), and s (S”,k)<S" when S” is higher
than S (k), as illustrated in Figure 1. For a density k&, S“/(k) is thus the unique, symmetric
Nash equilibrium.

As a consequence, the equilibrium speed for a given density & can be found by

minimizing ¢(S,k) in (5) with respect to the joint speed S and hence occurs when (6) holds:
0c(S,k) _ Oc oc

time + acc :O (73)
oS oS oS

* Note that the Appendix proves existence of a unique Nash equilibrium without using equations (2i) and (2j).
Figure 1 illustrates that when adding these assumptions, the existence of a unique symmetric Nash equilibrium in
fact requires (2g) and (2h) to hold only for s' = S, which is of course less restrictive than requiring
these inequalities to hold also when speed differences exist. We have, however, not included this consideration
in stating (2g) and (2h), because these conditions appear plausible also whens’ # S, and because the proof in the
Appendix requires them to hold also when speed differences exist.
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where we have decomposed the function ¢ into parts referring to time and accident cost,
suppressing the superscript i in order to indicate that we consider situations in which all
speeds are equal. Nash equilibrium cost levels can be found by substituting the equilibrium
speed S/ (k) into the cost function c(S,k):

(S (k), k) with S (k) = arg min ¢(S, k) (7b)

From a modelling perspective, a practical benefit of using c(S,k) is that, to find Nash
equilibria for different densities, there is no need to set up a many-actor model that describes
how an individual’s generalized cost level depends on her own and all other drivers’ speed
choices. It is sufficient to consider a generalized cost function ¢(S,k) as in (5), and minimize it
with respect to S.

It is important to emphasize that the use of the cost functions (5) and (7b) should not
be mistaken to imply that it is assumed that drivers coordinate their speed choices — which
would of course run counter the interpretation of a Nash equilibrium. Instead, the
minimization of ¢ with respect to a joint speed S to identify the Nash equilibrium speed choice
is just a computational procedure, made possible by the additional assumptions (2i) and (2j),
to find the equilibrium speed that comes about in a game that satisfies standard Nash
assumptions, and in which individual drivers therefore take all other drivers’ speeds, as well
as traffic density and flow, as given. Individuals set their individual speeds optimally through
minimization of ¢'(s';S™,k) in equation (4). The aggregate result of this behaviour is that
¢(S,k) in equation (5) will be minimized with respect to S.

For an analytical model, it is of course convenient to work with a deterministic model
that has a unique function S“ (k). At the same time, the scatter observed in empirical speed-
flow relations (e.g. Small, 1992, pp. 64—66) suggests that there is no reason to believe that in
reality, only one equilibrium speed should correspond with a given density. It is therefore of
some interest to point out that if we relax some of the assumptions that cause the equilibrium
to be unique in our model, one would generally expect the other symmetric Nash equilibria
also to exist only for speeds S around the minimum of a cost function as in (5). The
assumptions that cause the equilibrium to be unique would therefore appear not to affect the
(welfare) results in any significant way. For example, multiple equilibria might exist if (2h)
does not hold, and ¢(S,k) has no unique minimum, but a flat minimum segment instead. In that
case, there appears to be no pitfalls in interpreting the unique equilibrium speed S (k) that
we consider, as the expected value of the candidate equilibria that would then arise. Next,
multiple symmetric Nash equilibria would also exist if ¢'(s';S™,k) in equation (4) is not
twice differentiable in all its arguments, but would be kinked and minimized also for some
s'=87"#8k). S(k) (defined according to (7b)) then remains a symmetric equilibrium,
but so would be some speeds for which the middle term in (7a) is either positive or negative.
The expected value of the possible equilibrium speeds may then, in reality, still be close (or
even equal) to S“/(k) as just defined, because the aforementioned scatter-plots suggest that
equilibrium speeds for a given density only occur within a certain compact range, which
includes S (k) if (2g) and (2h) remain valid; and because there is no reason to expect that
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S“ (k) would be near either extreme of this range. Also note that, when (2g) and (2h) hold,
S (k) requires fewer assumptions to qualify as a Nash equilibrium than other speeds do:
S (k) would be a Nash equilibrium independent of whether ¢'(s';S™,k) is kinked at S,
whereas the other speeds do require a kink.

For analytical convenience, we will proceed under the assumptions (2a)-(2j) that
guarantee a unique symmetric Nash equilibrium, that is a unique minimum of (5).

Finally, two remarks have to be made with respect to the list (2a)-(2j) of assumptions
on c¢'. The first one is that they provide a set of intuitively plausible assumptions that are
sufficient to derive our results, but that some of them may be relaxed. For instance,
assumption (21i) is only used in order to ensure the existence of a minimum of ¢(S,k) and all
our results remain unchanged when it does not hold for situations in which there are speed
differences. Some other assumptions may be relaxed as well. Second, there are other plausible
characteristics of this function that have not been included in the list because we did not need
them for our present purposes, for instance that it is increasing in var(S ') and £.

2.3. A behavioural speed-flow function and its policy implications

We are now ready to derive a ‘behavioural’ speed-flow function. First we derive under which
additional assumption on the generalized cost function ¢(S,k) in equation (4), S“/(k) will fall
if k rises, as observed in reality for sufficiently high densities. When starting in an equilibrium
with (7a) satisfied, raising k& would make the middle term of (7a) 0c/0S positive if
0°c,. /0S0k >0, as is plausible for sufficiently high densities (when the cross-derivative is
zero, e.g. at low densities, no change in speed will be induced). To restore equality to zero, S
must then fall (recall that 0°c,, . /0S* >0 and that (2h) implies d°c, /8S*> >0).

This negative relation between & and S“(k) is consistent with the ‘fundamental
diagram of traffic congestion’. As in standard expositions, we may next use the identity (8):

F=8“k)k 8)

to derive a behavioural speed-flow function. As stated, we will only consider the non-
hypercongested segment of this function; i.e., that part for which the elasticity of S (k) with
respect to k is (in absolute terms) less than unity. For this part of the speed-flow function, a
higher flow is associated with a lower equilibrium speed and a higher density.

We can now derive some important implications from using a behavioural rather than
a technical speed-flow function.

Marginal external costs with respect to traffic flow with Nash equilibrium speeds

First we consider the marginal external costs with respect to flow when drivers are free to
choose speed and Nash equilibria as described above result. For this purpose, it is convenient
to denote the speed and density that are, according to (8), consistent with a given flow F' as
S(F) and k(F). The total costs as a function of traffic flow, TC(F), can then be found by
multiplying the Nash equilibrium generalized costs of (7b) — with S(F) and k(F) substituted —
with F:
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TC(F) = F Ue, (S(F)) + ¢, (S(F),K(FY) (9a)
Equation (9a) implies marginal costs mc(F) equal to:
mc(F) e Cn.me (m+ Cacc (m+ F £61i171€ fS(F) + F ﬁcll(’c £S(F) + F gcll(’c ﬁk(F) (9b)
oS oF oS oF 0k oF
and hence marginal external costs mec(F) equal to:
meC(F):F[?Cﬁme |:PS(F)+F|:?Cacc |:PS(F)+F|:?CHCC Dpk(F) (90)
oS oF 0S OF Ok OF

These marginal external costs consist of three terms. The first (positive) term reflects the
change in total travel time costs due to a speed change. The second (negative) term represents
the change in total expected accident costs owing to a speed change. The third (positive term)
gives the change in total expected accident costs due to a density change.

One way of grouping these three terms is therefore into marginal external time costs
(the first term) and marginal external accident costs (the second and third term). The total
marginal external costs are the sum of these, and so should be the optimal congestion toll. The
conventional analysis of optimal congestion pricing considers the first of these three terms —
the marginal external time costs — only. This clearly implies a non-optimal congestion toll
when expected accident costs are relevant congestion costs, too, and explain why drivers slow
down when traffic gets heavier. Indeed, the treatment of the speed-flow relation as a technical
relation obscures the simple fact that people slow down in congestion for a good reason,
namely to reduce expected accident costs. The associated economic analysis of congestion
pricing consequently overlooks the fact that observed speed flow functions results from
drivers’ trade-offs between expected accident costs and time costs, and hence convey
information on the marginal relevance of the external costs of both these types. This is of
course not to suggest that external accident costs have been neglected altogether in studies on
optimal transport pricing — but the logical connection with external time costs through
drivers’ speed choices in congested traffic, as reflected through the shape of the speed-flow
function, has been (a review of economic studies on the relation between traffic flow and
marginal accident costs is provided by Peirson, Skinner and Vickerman, 1998).

Before explaining why it is relevant to consider this connection, we first note that it is
not entirely inconceivable that a toll based only on the first term in (9¢) may sometimes lead
to overpricing, rather than underpricing. That is, because the second term in (9¢) is negative
and the third positive, their sum need not be positive, and marginal external costs may fall
when traffic flow increases. In general, however, one would expect both marginal external
time and accident costs to increase in £ at a higher flow, it will typically not be considered
optimal to slow down so much that the optimal accident risk associated with any lower flow
level is exactly reached. A congestion toll accounting for marginal time costs only would then
be an underestimation. In general, such a toll can be qualified as an erroneous estimation
(typically an overestimation, possibly an underestimation) — unless we have the special case
where road users have one particular level of ¢,..(Dl they desire, regardless of the situation on
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the road (i.e., there would be a perfectly inelastic demand for traffic safety, a possibility that
has become known as homeostasis in the traffic safety literature (Wilde, 1982).

A closer look at (9¢) shows why it may be important to consider the mutual
interdependence between marginal external time and expected accident costs explicitly. A
second way of grouping the three terms is namely into marginal external costs that arise via
the induced change in speed (the first two terms), and those that arise through the induced
change in density (the third). Equation (7a) shows that these first two terms will in fact cancel
as a result of optimizing speed choice, so that equation (9¢) can be simplified as:

mec(F)=F B‘% [f% (9d)

(Figure 7 below will illustrate this for our numerical model). The conventional analysis
therefore not only considers only a part of external congestion costs (only those through time
losses), but ironically also a part that — according to our model — cancels against another term
in the calculation of optimal congestion tolls. It is important to emphasize the root of this
difference. The conventional model, assuming a technical speed-flow relation, captures the
fact that an increasing flow will lead to a lower speed, and infers that as a result the time costs
for other drivers increase. The first term in (9c¢) reflects precisely this effect. However, our
behavioural model incorporates the idea that the equilibrium speed at a given flow is such that
a marginal change in an individual’s speed will leave her travel costs unaltered; both if the
other drivers do not make a similar a speed adjustment, and if they do (the symmetric Nash
equilibrium speed choice occurs at the minimum of ¢’ in equation (4) and at the minimum of
¢ in equation (5)). Therefore, the induced change in the joint speed S, following a marginal
increase in flow, has a zero total impact on other drivers’ total travel costs. As a result,
marginal external accident costs should not just be included as equally relevant congestion
costs as time costs are. It is even the case that the conventional marginal external congestion
costs through time losses cancel against reduced marginal external accident costs as resulting
from the same speed reduction in the calculation of total marginal external costs. The result is
that these total marginal external costs can be written in terms of accident costs alone.

The full optimum

One might be tempted to conclude that a congestion toll set equal to the marginal external
costs in equations (9¢) and (9d) would be sufficient to achieve the model’s full optimum.
This, however, is not the case. To derive the full optimum, we first define social surplus as the
difference between total benefits — given by the area below the inverse aggregate demand
function, D(F) — and total travel costs. The latter are simply defined as FId(S,k), with c(S,k)
defined according to (5). It is therefore not imposed that the speed chosen should be the Nash
equilibrium speed. In contrast, the welfare function will be optimized with respect to two
variables out of the triplet F, S and k£ — with the third following from the fundamental identity
F =S [k. It is immaterial which of these three is substituted out of the welfare function, and
we choose to maximize welfare with respect to F and S. This makes the first-order conditions
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correspond directly to the optimal use of two policy instruments that we are interested in,
namely a toll T (to control the flow) and a speed policy, stipulating the speed to be chosen.
(Note that the assumptions on the cost function (1) are such that there is no welfare gain to be
reaped from setting different speeds for different users, so there is no loss from working with
a prescribed joint speed ). If speed policies are binding, an equilibrium condition equivalent
to (7a) of course no longer holds, as speed cannot be chosen freely by individuals. The social
optimization problem then becomes:

Max IV = [ DO = F b, (5) + . (5.1
F.S ) i C (10)
(S)+ec. (5.5

time acc )

st.: D(F)=T+c

The first order conditions can be written as:

W o DFY =y~ ~F Pl o popded (11a)

aF time acc ak S ak S

= —p e _pflue _pfu T F (11b)
as as ok S

in which we have re-introduced £ to facilitate comparability with earlier expressions.
Equation (11a) in fact implies a simple Pigouvian tax rule equal to marginal external
costs with respect to flow — consistent with what is found in the conventional model.

Specifically, because ¢, . is independent of k, and using F =S [k, T in equation (11a) can

time

be rewritten in its familiar form as:

= piffan ol < pefin Bk ek pcle 2

ok OF 0k OF

Note, however, that — as under free speed choice — again only accident costs matter for the
marginal external costs with respect to flow, and again only induced changes via a change in
density, not in speed (note the similarity between (9d) and (12a)). An interesting implication
of this latter aspect is that, unlike in the conventional model, we may also rewrite T (again
using F =S [k) as:

= k [feee kaa— (12b)
ak

Equation (12b) does not hold true in the conventional model, in which the value of (12b)
would be zero because only speed S, not density &, determines the cost of travel.

Next, (11b) shows how the regulator should set the speed S optimally. Without speed
policies, the Nash equilibrium speed S would be such that the sum of the first two terms in
the middle expression in (11b) equals zero (compare (7a)). This implies that under a free
speed choice, (11b) will not be satisfied — unless there is no marginal impact of density on
expected accident costs and 0c,../0k=0. However, when dc,../0k>0, a freely chosen speed
would lead to the middle expression in (11b) being positive, and equal to F*/S*@cq../0k =
K*[0¢,../0k. Raising S would then be necessary to satisfy the optimality condition (11b). A
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higher S would in the first place increase the value of 0c¢,/0S + 0cu./0S (because
d’c, . /0S* >0 and d’c, /8S* >0), so that the first two terms in the middle expression in
(11b) become negative. A higher S would furthermore reduce the value of the positive third
term (which equals F*/S” [dc,, /0k).

We can thus conclude that — consistent with Rotemberg (1985) — the optimal speed S°
must exceed the Nash equilibrium speed in order to satisfy (11b). To obtain the full welfare
optimum, the regulator would thus have to use a combination of a ‘flat’ (speed-independent)
toll as in (12ab) and a compulsory speed as implied by (11b). Note that, as dc/0S>0 in the
optimum, a minimum speed restriction could be used, too. The motivation for actively using
speed policies, alongside tolling, lies in the fact that the Nash equilibrium speed choice is
characterized by a zero partial derivative of generalized costs ¢ with respect to S (as in (6)),
while optimal speed choice requires a zero total derivative of generalized costs ¢ with respect
to S (as in (11b)). The difference is caused by the indirect effect of a speed change, via a
change in density £ when keeping flow F' fixed at its optimal level, upon these generalized
costs. Atomistic road users will ignore this effect.

Speed policies as described above will not be a very practical policy for city traffic,
where vehicles often decelerate and accelerate, and stationary traffic conditions seldom apply.
Speed regulation may appear more feasible for (long) highways (for which also the
conventional model, to which our results are contrasted, is much more appropriate). Speed
regulation could be enforced by manual or electronic monitoring. Besides direct speed
regulation, tolls could also be set dependent on the speed chosen, so as to decentralize the
choice of the optimal speed. Especially when sophisticated electronic tolling techniques are
used, this may have a great advantage in terms of monitoring and compliance. As a third
option, the regulator may choose to affect density and flow instead of speed and flow, and
obtain the same full optimum (letting S follow from the identity F' = £-S). Flow could then be
controlled using the toll, as above, and density by prescribing a minimum gap. (Rotemberg,
1985, considered the derivation of such an optimal gap, but for ‘gap policies’ in isolation).

Our analysis thus shows that when a behavioural representation of traffic congestion is
used, the full optimum can be achieved only when both the traffic flow and the speed at which
people drive are affected simultaneously. An important consequence is that the optimum
combination of flow and speed are off the empirical speed-flow curve (representing Nash
equilibria), and off the average and marginal cost functions that the conventional analysis
derives from it. The optimum therefore by definition cannot be found in the conventional
analysis, which treats the speed-flow function as an exogenous, technical relationship.

The result that the optimum speed is above the speed that would be freely chosen
warrants a few final comments, not in the least place because it may run counter primary
intuition, and seems to be in contradiction with practical policy making, where speed limits
invariably involve maxima, not minima as suggested here. In the first place, speed limits in
practice are typically motivated by safety considerations in uncongested situations, and
sometimes by environmental concerns — which are absent in our model, and that might indeed
change the results. Our result concerns congested traffic. Moreover, the type of congestion
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considered is steady-state flow congestion, not bottleneck congestion. In other words, our
result does certainly not imply that we would advice traffic regulators to increase the speed at
which car drivers should approach a queue behind a fixed (tunnel) or temporary (accident)
bottleneck. Our result also does not imply that we advice to set a minimum speed limit above
the prevailing speed after congestion has already become severe. Instead, the combination of a
toll and a lower speed limit only makes sense if evaluated from the steady state perspective,
i.e., both should be known beforehand, and of course if flow congestion is present on the road
considered. Only then can the beneficial effect of a higher speed on lower density and hence
lower expected accident costs be expected to be reaped.

3. An empirically calibrated simulation model

The question of course arises what the empirical relevance of the above findings might be. To
the best of our knowledge, no traffic model is currently available that could be used to answer
this question, so a numerical model was developed for this purpose. Especially for accident
risks as a function of speed and density, we could not find any specifications in the literature
that were useful for our purposes’, and an admittedly simple specification was chosen and
calibrated using available empirical evidence. If only for this reason, we emphasize the rather
speculative character of our numerical model, and stress that it only serves to illustrate the
qualitative points made above in an empirical context. Given the potential importance of the
qualitative conclusions obtained above, further empirical research seems warranted.

This section describes the structure and calibration of our numerical model. Policy
evaluations are described in Sections 4 and 5 below.

A few introductory remarks are in order. For the purpose of calibration, we found it
convenient to work — without loss of generality — with a normalized density K, which can be
defined as the ratio between the number of cars per unit of road space and the number of cars
that can be packed on one lane over a unit length, cap (cap is therefore the maximum capacity
in terms of density, not in terms of flow as it is usually defined). When & approaches the so-
called jam capacity K", k approaches unity. For a road with L lanes and a length /, traffic
density depends as follows on the number of vehicles present on the road (n):

n

k=—— 13a
53 (13a)

while K is defined as:

K=—" (13b)
[ UL Léap

The fundamental identity becomes:

F=Slk=S[k[tap (14)

> Two recent contributions worth mentioning are Dickerson, Peirson and Vickerman (2000), who study — for
different types of road — the relation between aggregate flow and accident rates; and McCarthy (2001), who
reviews the literature on speed limits and highway safety. Also these studies do not provide disaggregated
empirical estimations of accident risks as a function of density and speed, as needed for our model.
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Finally, we aim to calibrate the generalized cost function of equation (5) (with fuel costs
added), and not the individual’s cost function of equation (1), and hence will only consider the
‘joint’ speed S as an argument — not the individual’s speed s'.

3.1 Time costs

The time costs c¢;ne €xperienced by a driver are simply assumed to be the product of the
constant value of time, ayin., and the travel time, I/S:

ctime = atime Gé (15)

(I denotes the length of the road). If c;,. were the only relevant costs, as assumed in the
conventional analysis, the optimal speed implied by (15) would be infinite.

3.2.  Fuel costs

Compared with the models presented in Section 2, we add fuel as a third cost component.
Also fuel costs typically vary with driving speed. Two types of approaches to determine fuel
use as a function of speed can be distinguished in the literature.

A first approach concerns fuel use as a function of constant driving speeds, as
measured for instance in laboratory experiments. The three main effects of speed on fuel use
per kilometre distinguished in such studies include the fuel used per unit of time to keep the
engine running, implying an inverse relation with speed; a constant; and a quadratic term
which reflects increased aerodynamic and mechanical friction at higher speeds. The three
together imply a U-shaped relation (e.g. Rouwendal, 1996; Pronk et al., 1993):

cfuel = l |}?fuel gd + bfuel + dfuel L_‘Sz % (16)

where Py, is the fuel price, and ajes, bjier, and dy,er are parameters. Equation (16) implies that
fuel consumption per kilometre will reach a minimum at some positive, finite speed — the
optimal speed if only fuel costs mattered.

A second strand of studies instead focuses on fuel use in actual traffic conditions (Fwa
and Ang, 1992; OECD, 1982). Fwa and Ang (1992) give a detailed overview of such studies,
all of which use a simple inverse function that implies a cost function of the following type:

- a f"uel
Cfuel - Z |Tﬁ4e‘l E'T (17)

where af#ue, is a parameter different from ay,; above.

The formulation in (16) ignores increased fuel use at lower speeds as caused by
congestion, and the one in (17) that at higher speeds, aerodynamic friction will become more
important and raises fuel use. Neither is therefore directly suitable for our analysis. Also a
straightforward combination of the two — for instance the compromise of inserting an estimate
or approximation for ajfuel in (16) — is not satisfactory, as our model should reflect that
increased fuel use at congestion-induced lower speeds is not caused primarily by the low
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(average) speed itself, but is instead due to the fluctuations in this speed, which in turn result
from the higher occupation of the road. To reflect these considerations, we use a formulation
with (16) as the basis, but that is extended with a term that approaches unity when density
approaches zero, and that is otherwise increasing in density and in speed. This reflects that the
number of times a driver would have to adjust speed to avoid a collision increases both in the
joint speed, given the density, and in the density, given the joint speed:

Cliel = [ D)fue/ E(l + 5fue[ [5 P [ e )E% + bfuel + dfuel [5? E (18)

where O, Bier and Oy, are parameters. As will be discussed in Section 3.4, these parameters
were calibrated such that cje; in (18) approaches an empirical estimate for (17) when
congestion gets more severe, while it approaches (16) when the road is nearly empty.

3.3.  Expected accident costs

The expected accident costs are probably the most complex to model among the three
generalized cost components we distinguish, at least when aiming for the simplest possible
specification for each component. Unfortunately, we were unable to find any empirical
studies presenting disaggregated specifications of expected accident costs, or even risks, as a
function of speed and density. Hence we developed a specification of our own, in which we
consider one type of accidents only, namely those involving other vehicles (collisions with
fixed objects alongside the road are ignored). On a unidirectional road where drivers have
equal average speeds, this should be interpreted as head-tail collisions resulting from
fluctuations in this average speed. In our analysis, c,.. represents the share of accident costs
that will affect a driver’s behaviour. It should thus be interpreted as the non-insured share of
accident costs, typically the immaterial costs of pain and suffering and the value of life
multiplied by the probability on a fatal accident.’

A first element governing the expected costs of accidents involves its probability, pc..
We assume that this probability is 0 when the joint speed is zero, and otherwise increases
more than proportionally with speed given the density, to reflect a more than proportional
impact of reaction time and breaking distance. In addition, the probability increases more than
proportionally with the density given the joint speed, as a greater occupation urges a driver to
divide attention among more fellow road users. Moreover, these other users behave less
predictable with a greater road occupation, because they too have to divide attention among
more fellow road users. This leads us to the following specification:

P =100, B %) (19)

where O,cc, Quee and [, are parameters, the latter two greater than 1.
Next, the expected costs of an accident, in case one indeed actually happens, c,cqc, Will
generally also depend on speed (despite the actual occurrence, we still speak of ‘expected’

% Note that we ignore both the welfare and the behavioural effects of insured accident costs and insurance
premiums.
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costs to reflect that the severity of a given accident for a given speed and density may still be
stochastic). In general, the expected costs of a given accident can be expected to increase
more than proportionally with the actual speed difference between the two cars involved, due
to the greater impact of a collision. In the context of our model, the next question is to what
extent implicit expected actual speed differences during the instant of a collision would vary
with the explicit, identical, average speeds. We simply assume that these absolute speed
fluctuations are a fixed technical function of S, which we admit is a simplification, but one
that does not affect our results in any fundamental way. In addition, we assume that any
accident, also one at a speed marginally above zero, will involve fixed costs cyca, Which
reflect the emotional shock of hitting another vehicle, the administrative burden, time losses,
etc. Under these assumptions, the costs of an actual accident may take the following form:

c =c¢ +5  [FPu (20)

acac acac, f acac

The overall expected accident costs can then be written as:

CIZCC = pacc |]:.IZCHC (21)

3.4.  Calibration of the numerical model

Sections 3.1-3.3 introduced the specific cost functions underlying our numerical model. The
simplicity of the functions used was motivated by the absence of alternative models, in
combination with our desire to keep the model as simple as possible, given the complicated
issues studied with it. Insofar as it is capable of reproducing observed facts related to speed
choice, traffic congestion, fuel use and traffic safety, it does so using probably the simplest
possible underlying model, which has the advantage of minimizing the model’s black-box
character as well as the number of parameters that need to be calibrated.

The model has 17 parameters. Some of these could be chosen freely. In particular, we
consider a single lane (L=1) of one kilometre long (/=1), which means that all results to be
presented are standardized to a per-kilometre, per-lane basis (the unit of time will be 1 hour).
Other parameters could be determined directly, using available estimates. A third category
had to be determined indirectly, by assessing their impact on the implied speed-flow curve
(Figure 2) and fuel-use curve (Figure 3). Table 1 gives an account of the parameter values
used, and the motivation. There were fewer parameters to be determined indirectly than goals
specified for those parameters. This means that given the structure of the model, there was not
much freedom left for simultaneous changes in any pair of parameters and still obtain a speed-
flow curve and a fuel-use curve similar to those depicted in Figures 2 and 3.

Figure 2 shows the speed-flow curve generated by the numerical model using the
parameter values in Table 1. It was obtained by gradually increasing density from 1 to the
maximum of 250, and combining the associated values of S and F' (=£[3).
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Parameter Value Motivation
Determined directly Determined indirectly”
Ayime 16.2° ‘Official” average value of time
for road traffic in the
Netherlands (AVYV, 1998)
Pl 2.25° Average gasoline price per litre
in The Netherlands, 1999-2000
el 1 Based on Pronk et al. (1993)°
bl 0.0175 Based on Pronk et al. (1993)°
dpel 2.600° Based on Pronk et al. (1993)°
Ol 0.03 Set such that given the choice of a,; and B, curve D in
Figure 3 is sufficiently close to B between 40 and 100 km/hr
Qe 3 1. To reflect an anonymous expert’s opinion that for
speeds between 60 and 100 km/hr, the two opposing
effects of speed on fuel use as reflected by curves A and
B in Figure 3 will more or less cancel out and a flat
curve D should result
2. To obtain a curve D in Figure 3 sufficiently close to B
for lower speeds
Bt 2 As above
Oce 300 1. To obtain a risk level at a speed of 114 km/hr of 3007,
well below the average risk level of 4007 (per vehicle-
kilometre) for head-tail collisions on Dutch highways,
for which the same average speed applies (over a year;
http://avvisn0.rws-avv.nl/cgi-bin/wdbcgiw/avv/AVV . home )Gl
2. To obtain a maximum flow level between 2000 and
2500 vehicles per hour per lane (Figure 2), in line with
empirical findings (e.g. Small, 1992, Figure 3.4)
e 5 To obtain a plausible curvature of the speed-flow function
(Figure 2):
1. arather flat segment up to a flow of 1500 and a strongly
concave backward-bending shape beyond that point
2. amaximum flow for a speed of around 60 km/hr
Bice 2 As above
Cacacf 5000 Best guess of the fixed costs of an accident; i.e., the willing-
ness to pay to avoid even the least serious possible accident
Oucac 95000/120 Given the choice of and B, this value implies that the
expected costs (non-insured, typically immaterial) of an
accident at an average speed of 120 km/hr is Dl 100 000
Bicac 1 Assumption that the expected speed difference during a
collision rises less than proportional with joint speed, which
exactly offsets the more than proportional increase of
accident costs with expected speed difference. If the latter
were quadratic, to reflect the law of kinetic energy, our
assumption would be that the expected speed difference
increases linearly with the square root of a constant times S
/ 1 Unity (1 km) by assumption
L 1 Unity (one lane) by assumption
cap 250 / (1 km) divided by the average
length of a passenger car (4
meters)
Notes
a)  The motivations in this column give the primary target(s) for which the parameter was used. Evidently, as ‘everything affects

b)
<)

d)

everything’ in this model, we caution against the possible suggestion that parameters could be set independently of each other so as to
realize the given target directly.

The exchange rate of the Dutch Guilder early 2001 was Dfl 2.20 =€ 1 =$ 0.95.

Pronk et al. proposed somewhat different values of as.=1.014, b3 =0.015 and dj,=3.049100° (see the curve A in Figure 3). At the
given fuel price of Dfl 2.25, this would in absence of any other road users and hence accident risks lead to an unrealistically low free-
flow speed of 110 km/hr. By lowering dj.; and adjusting by.;, we obtained a somewhat flatter right-hand side of the fuel use curve (see
curve C in Figure 3), implying a free-flow speed of 116 km/hr.

The factor 8 difference is our best guess of the effects of the two facts that in reality, traffic is heterogeneous, and that the empirical
figure is the average of congested and uncongested situations. In The Netherlands, in 1996 some 1750 head-tail collisions involving
passenger cars occured on highways (SWOV, personal communication), for a vehicle kilometrage of 47 billion (AVV, 2000)

Table 1: Calibrated parameter values (cost-side of the model) and motivation
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4 Full optimum for the demand function in the simulation mode! (see Section 5)

Figure 2. The speed-flow curve generated by the numerical model, and the full optimum for the
assumed demand function

Note that even for a fully packed road, our model suggests a positive speed of 6 km/hr, so that
road users will then choose not to incur infinite time costs by staying on the road forever. For
all points shown, generalized costs are minimized with respect to S (taking k£ as given) as
required for a symmetric Nash equilibrium (see Section 2.2); see also Figure 4 below. The
curve has the familiar backward-bending shape, and a maximum flow of 2408 vehicles per
hour at a speed of 60 km/hr, which makes it similar to speed-flow curves as observed in
reality (e.g. Small, 1992, Figure 3.4).

The lower segment of the curve corresponds to hypercongestion. Hypercongestion is
often observed in reality. Verhoef (1999, 2000) claims that although such equilibria can exist
as stationary states in a model without downstream (fixed or moving) bottlenecks, they are
dynamically unstable in the sense that there is no path from any other stationary state that
would lead to a queue-free hypercongested stationary state.” However, it is the first part of the
previous sentence — hypercongested equilibria can exist as stationary states — that makes the
views expressed in those papers consistent with the speed-flow curve as depicted in Figure 2.

Next, Figure 3 shows fuel use as a function of S. The dashed curves A and B show the
empirical estimates of equations (16) and (17) that were used as the basis for the calibration.
Curve A gives (16) as presented by Pronk et al. (1993), which was adjusted slightly to the
solid curve C for reasons outlined in Table 1. Curve B gives (17) as estimated for Dutch
highways, which was found in Fwa and Ang (1992) quoting OECD (1982). Curve D gives the
equilibrium fuel use function as given in (18) for our model, calculated for the combinations
of S and k underlying the speed-flow curve in Figure 2. As we attempted, the curve
approaches curve C for freely flowing traffic, and gets close to curve B for lower speeds. Note
that curve D in Figure 3 is defined up to the free-flow speed of 116 km/hr, only, but that
equation (18) allows the determination of fuel use also for higher speeds (as in Section 5).

7 According to this view, observed hypercongestion would thus always have to result from a downstream
bottleneck (for a similar view, see also Daganzo, Cassidy and Bertini, 1999).
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fuel use

0.14
0.12

0.1
0.08
0.06

0.04
0.02

20 40 60 80 100 120 140

AFor constant , based onPronk ef al. (1993)

B For actual traffic conditions, based on Fwa and Ang (1992) and OECD (1982)
C Adjusted version of Ato obtain a hiﬁzherfree—ﬂawsp%d

D Endogenously resulting from the full mode!

Figure 3. Fuel use as a function of equilibrium speed (litres/km): sources and endogenously
determined function

Finally, Figure 4 shows the generalized costs ¢, and its three components, as a function of S
for equilibria corresponding with the average speed on Dutch highways (around 114 km/hr;
left panel) and the base-case equilibrium that will be used in Sections 4 and 5 below (around
76 km/hr; right panel). The upper curves depict generalized costs as a function of S (for a
given density k), and show that these are indeed minimized for the equilibrium speed (in the
centre of both diagrams). Furthermore, the diagrams show that expected accident costs are
practically insignificant for the higher speed equilibrium in the left panel (having an
equilibrium value of Dfl 0.0004 per kilometre), whereas they become significantly higher for
the lower speed (base-case) equilibrium in the right panel (Dfl 0.03 in the equilibrium).®
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Figure 4. Generalized costs per kilometre for the average speed on Dutch highways (left panel) and
the base-case of Sections 4 and 5 (vight panel) as a function of joint speed S (keeping density k fixed),
equilibrium speed at the intersection of the axes

¥ The exchange rate of the Dutch Guilder in 2002 was Dfl 2.20=€ 1=$ 1.
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Time costs have the expected shape. Fuel costs are rising more sharply than what might be
expected on the basis of Figure 3. The reason is that Figure 3 shows equilibrium levels of fuel
use, while Figure 4 shows the effects of a change in S keeping density fixed. Finally, as
expected, generalized costs are higher in the right panel (Dfl 0.28 versus Dfl 0.38). The
associated curves may be flatter than one may have anticipated. However, recall that we
consider costs as a function of the joint speed S in these figures, not of an individual’s speed
s’ keeping others’ speeds fixed.

This concludes the discussion of the calibration of the cost side of our numerical
model. It turned out that we were able to base some parameter values on direct estimates
(such as value of time and fuel prices), and choose the remaining ones such that the model
produces a speed-flow function and a fuel consumption function similar to those observed in
reality. Also the main endogenous variables (risk levels, range of speeds for the speed-flow
curve, the maximum flow and the speed at which it occurs) are conform empirical evidence.
However, we re-emphasize the model’s illustrative character, implying that the main results
as discussed in Sections 4 and 5 below should be treated with sufficient care.

We conclude this section by specifying the demand function to be used. A simple
linear inverse demand function is assumed to apply, which has — consistent with the steady-
state character of the model — flow F as the argument:

D=0-alF (22)

With &=1.32 and a=0.0004, the equilibrium depicted in the right panel was obtained, for
which an equilibrium demand elasticity of —0.4 applies.

4. ‘Flat’ tolls: the performance of a ‘naive’ regulator

The potential relevance of using a behavioural approach can in the first place be assessed by
comparing the ‘true’ welfare optimum with flat tolls — according to the behavioural model, so
assuming that that is the correct model — with the performance of what we will call a ‘naive’
regulator, who is not aware of the underlying behavioural model and uses the conventional
procedure for setting congestion tolls.

DA

Figure 5. The market diagram according to the ‘naive’ regulator
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Specifically, we assume that the naive regulator sets the congestion toll he expects to be
optimal, based on a correct knowledge of the speed-flow curve, the value of time, and the
demand relation. To do so, he manipulates the upper segment of the speed-flow curve in
Figure 2 into an average cost curve AC by using cime=0imlIS. A marginal cost curve MC is
next obtained according to MC = AC +dAC /0F , and a toll T, can be found as the difference
between these two in the ‘optimum’ where D=MC holds. Figure 5 shows the resulting market
diagram.’

In the non-intervention equilibrium, a flow of F’=2347 and a speed of 76 km/hr
applies. The naive regulator identifies an ‘optimum’ with a flow of F',=2065 and a speed of
95 km/hr, which he expects can be realized using a toll 7', equal to Dfl 0.155 per kilometre
(Table 2 in Section 5 summarizes the key features of the various equilibria and optima
considered in Sections 4 and 5). When actually applying this toll in the true model, a flow of
2107 and a speed of 93 km/hr will in fact result. The difference is due to changes in marginal
expected accident costs and fuel costs, which are not anticipated by the naive regulator. For
the sake of the argument, however, we assume that the naive regulator ignores the implied
discrepancies with his prediction. The question we wish to address — for reasons that will
become apparent below — is namely to what extent the predicted naive toll and its welfare
effects would deviate from the truly optimal flat toll and its efficiency gains.
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Figure 6. True welfare gains and welfare gains as estimated by a ‘naive’ regulator as a function of
‘flat’ (speed-independent) tolls

To answer this question, Figure 6 shows the true welfare gains, and those as predicted by the
naive regulator, as a function of the ‘flat’ (speed-independent) toll 7. The latter obtains an

? Note that we assume that the naive regulator treats all costs other than time costs in the non-intervention
equilibrium as constant average costs, which has led to an upward shift of the AC and MC to values above time
costs alone. Otherwise, the cost function AC and demand function D could not produce the observed non-
intervention flow F°.
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optimum at 7=0.155, consistent with Figure 5 above, for which a welfare gain of Dfl 72 (per
hour per kilometre highway) is predicted.'® The upper curve shows that the truly optimal flat’
(i.e., speed-independent) toll amounts to Tfﬂa,20.195, yielding a welfare gain of Dfl 116.

Figure 6 conveys two important messages. First, as predicted in Section 2.3, the naive
regulator would set the flat toll too low. In our example, Tfﬂa[ is some 25% higher than T*n.
However, as shown by the upper curve, the welfare implications of this ‘mistake’ are,
relatively speaking, much smaller. Due to the concave shape of the true welfare gains as a
function of the flat toll, 7=0.155 leads to a gain of Dfl 112: some 96% of the maximum gains
that can be achieved with a flat toll, and much higher — nearly 60% — than what the naive
regulator anticipates and indeed will ever be aware of. Secondly, the truly achievable welfare
gains of congestion pricing are much higher than anticipated by the naive regulator: Dfl 116
versus Dfl 72, which means more than 60% higher.

The conclusion is therefore that our numerical model suggests that the main efficiency
losses that can be expected from using the conventional instead of a behavioural model to
determine congestion tolls would rnot be primarily due to the setting of an erroneous toll level.
The concave shape of welfare gains as a function of toll levels can be expected to be a general
phenomenon, as the absolute difference between marginal benefits and marginal social costs
will generally decrease in the absolute deviation from the optimal flow. As a result, any x%
downward deviation from the optimal toll will typically lead to a less than x% loss in welfare
gains compared to the true optimum (with 0<x<100). Instead, our model suggests that a more
important source of inefficiency would be due to the underestimation of welfare gains of
congestion tolling — both optimal, and using the naive toll. As a result, congestion tolls may
often not be put into practice at all, in which case of course neither the expected nor the actual
welfare gains from ‘naive’ tolling will ever be realized.
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Figure 7. The five marginal external cost components under Nash equilibrium speed choice: via
induced changes in speed (left panel) and density (vight panel)

Finally, we use the numerical model to illustrate the result that under Nash equilibrium speed
choice, the conventional marginal external costs with respect to flow (due to time losses)

' All tolls reported are determined at a Dfl 0.005 precision level.



24 A Structural Model of Traffic Congestion

cancel against other marginal external cost components related to induced speed changes. The
left panel in Figure 7 shows the relevant three marginal external cost components as a
function of traffic flow. The upper curve, mec[time,speed], shows the conventional marginal
external costs, resulting from travel time losses due to a lower speed (the notation for the
other marginal external cost components follows the same logic). It has the expected shape.
However, speed reductions following an increase in flow reduce the marginal external fuel
and accident costs, as shown by the other two curves, and the sum of these three — shown by
the bold mec[speed] line — is indeed equal to zero, consistent with our discussion of (9¢) and
(9d) in Section 2.3. The total marginal external costs are therefore equal to the sum of those
components that are related to induced changes in density, shown in the right panel. Their
sum, given by the bold mec[dens] curve, therefore corresponds with the ‘true’ marginal
external costs. It was verified that at the optimal flow under ‘flat’ pricing (¥ = 2031), these
marginal external costs are indeed equal to the required toll level (Dfl 0.1936) (note that for
this calculation, we used a greater precision for the optimal toll than elsewhere).

5. Toll- and speed policies: the full optimum

The numerical model also allows us to study the claim that the full optimum requires
simultaneous interventions with respect to flow and speed in an empirical context. To that
end, Figure 8 displays welfare gains as a function of (flat) toll levels and minimum speed
limits, the latter shown as speeds in km/hr above the speed that would be chosen freely in an
equilibrium with the flat toll alone (this speed is given in parentheses along the toll axis).
Since the limits will be binding, actual speeds will be equal to the minimum limit specified,
and the policy of minimum speed limits is in fact equivalent to one of exactly prescribed
speeds. The ‘front arch’, along the toll axis, reproduces the upper curve in Figure 6.
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Figure 7. Welfare gains as a function of tolls and minimum speed limits
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The figure shows that by using these two instruments together, further welfare gains can be
realized compared to the use of flat tolls alone: Dfl 150 versus Dfl 116, an increase with
nearly 30%. The full optimum involves a significantly lower optimal toll T*O,,, than flat tolls in
isolation: T*op,=0.l2 versus T *ﬁm=0.195; or only just above 60%. At the same time, drivers are
requested to drive considerably faster than the 90 km/hr that would apply in an equilibrium
with a flat toll of Dfl 0.12 alone: 121 km/hr — which is even above the free flow speed of 116
km/hr applying in our numerical model. As a result, the full optimum (marked with a star in
Figure 2) is off the speed-flow curve. Incidentally, it occurs at a speed that implies an average
(time) cost level even below the free-flow (time) costs as considered by an naive regulator
(the nearly horizontal segment of AC in Figure 5), which nicely illustrates in a different way
the impossibility of identifying this full optimum using the conventional procedures.

Non- Flat tolls by naive regulator Optimal flat Prescribed Full optimum:
intervention Believed True tolls speeds tolls and
speeds

Flow 2347 2066 2107 2028 2479 2220
Speed 76 95 93 97 124 121
Costs:

c 0.381 0.339 0.322 0.314 0.328 0.312

Cluel 0.136 - 0.137 0.137 0.182 0.167

Clime 0.212 0.170 0.173 0.167 0.131 0.134

Cace 0.032 - 0.012 0.009 0.016 0.009
Toll 0 0.155 0.155 0.195 0 0.120
Welfare gain 0 72 112 116 127 150

% of first-best 0% 1(1‘0;; (E)aeclilel;/f)d) 75% 77% 85% 100%

0

Table 2. Key characteristics of the various equilibria considered

As described in Section 2.3, the additional welfare gains are due to the beneficial impact that
a higher speed, for a given flow leading to a lower density, has on expected accident costs and
— in the numerical model — fuel costs. Note that, when comparing flat tolling alone and the
full optimum, these gains are for the numerical model nearly fully ‘absorbed’ by the higher
flow that becomes possible at nearly the same level of generalized costs, and that in turn is
made possible as a market equilibrium due to the lower toll level applying.

Speed policies thus appear a strong instrument in our numerical model. This is in the
first place illustrated by the rather fierce use of the instrument when combined with tolls, and
by the fact that doing so allows optimized flows to go up from 2028 to 2220 while keeping
average generalized costs nearly unchanged at Dfl 0.31 per kilometre (see Table 2; note the
interesting but intuitively plausible aspect that whereas c,.. has remained virtually unchanged,
the magnitudes of ¢, and ¢ have moved in opposite directions between both optima).

This same point is illustrated perhaps even more dramatically by the fact that for our
numerical model, speed policies alone perform better than flat tolling alone — an unexpected
result for an economic model. Whereas the optimal flat toll in isolation achieves 77% of the
welfare gains of the optimal combination of policies, speed policies alone realize a gain of Dfl
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127, or 85%. Clearly, this result is due to the specific cost functions used in the numerical
model, and may be reversed to the more comfortable conclusion (at least for economists) that
tolls alone are more efficient than speed policies alone, when different functions are used.
Different results could of course also be obtained when environmental costs were included, or
when a different demand elasticity were used. The important point here, however, is that our
numerical model suggests that speed policies may lead to substantial welfare benefits for
roads suffering from flow congestion, and may therefore deserve more attention in the design
of congestion policies.

Finally, we noted in Section 2.3 that instead of using speed restrictions and tolls
together, tolls could also be set dependent on the speed chosen in order to decentralize the
choice of the optimal speed. In the optimum, the absolute /evel of the toll should then be equal
to the value as given above, while the slope of the ‘toll gradient’ (the toll as a function of an
individual’s speed) in the optimum should induce each road user to choose the optimum
speed. Specifically, the optimum speed should become cost-minimizing when a road users
takes into account the effect of speed chosen on the toll to be paid.

Given our consideration of symmetric equilibria and joint speeds S only, we are in fact
unable to derive an analytical expression for the optimal slope of the gradient, T'(s"), for our
current model specification. This slope should reflect the marginal costs for all other users
resulting from a marginal change in speed by one individual user in the optimum — which can
not be determined unless the effect of speed differences on generalized costs is modelled
explicitly. Likewise, an individual will trade off T'(s") against the private costs of a marginal
change in his own speed s, assuming all others’ speeds fixed. This too cannot be analyzed
without an explicit modelling of the effect of speed differences on generalized costs. This all
reflects that an individual considering a deviation from an equilibrium speed will not assume
that all other road users will make the same deviation simultaneously.
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Figure 8. Generalized costs per kilometre for the full optimum as a function of joint speed S (keeping
density k fixed), optimal speed at the intersection of the axes

We can nevertheless provide some insight into the numerical value of T'(s’) in the optimum
of our simulation model. Figure 8 shows that in this optimum, contrary to what was seen in
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Figure 4, ¢ is not minimized with respect to the joint speed S (keeping k fixed at its optimal
level!) — which is why speed regulation is necessary in the first place. If ¢'(S) were taken as
the basis for determining the optimal slope of the toll gradient, a value of around —0.001
would be found as the optimal value of T'(S): every 10 km/hr speed reduction in the joint
speed S would have to lead to an increase in toll with Dfl 0.01 per kilometre driven. (This
value was determined by evaluating the derivative of ¢ in Figure 8 with respect to .S, which is
not shown graphically). This would lead ¢(S)+17(S) to obtain a minimum at the optimal speed
of 121 km/hr. Depending on the magnitude of ¢'(s') relative to ¢'(S), the policy variable of
true interest, T'(s’), may be smaller than, equal to, or larger than 7'(S) thus derived.

6. Conclusion

This paper presented a behavioural model of highway traffic congestion, which does not treat
the speed-flow curve relation as technical relationship, but instead as resulting from
individual’s cost-minimizing speed choices instead. The model incorporates the basic but
often ignored fact that people slow down in traffic congestion for a good reason, namely that
otherwise accident risks would become excessive. Since accident risks depend on the
presence of other users, congestion externalities therefore not only include time costs, but also
expected accident costs (and fuel costs, as in our numerical model).

A number of conclusions stand out. A first is that congestion tolls suggested by cost
curves derived from a speed-flow function in the conventional way (by multiplying the
inverse of speed by the value of time for each flow level to obtain the average cost function)
are typically not optimal when other externalities cause drivers to slow down when traffic
flow increases. Secondly, this conventional toll in fact vanishes with Nash equilibrium speed
choice in our model, because the extent to which drivers slow down and choose to incur
higher time costs follows from a trade off with reduced expected accident and fuel costs, as
depending on speed — which makes the derivative of travel costs with respect to speed zero in
equilibrium. The third conclusion is that the full welfare optimum in our model occurs off the
speed-flow function, and off the average and marginal cost functions as derived from it in the
conventional analysis. The first result obtains whenever lower speeds with increased flow are
not the result of some exogenous technical law, but instead are chosen consciously to avoid a
part of the higher accident and fuel costs that would result from sticking to the original speed
after an increase in road use. The second result rests on the Nash equilibrium speed choice
occurring not only where the individual’s travel costs are minimized with respect to her own
speed, but also to the ‘joint’ speed. The third result requires individual drivers to treat
aggregate variables as equilibrium flow and density as given. All requisites seem plausible.

The full optimum in our model requires either the combination of flat (speed-
independent) tolls with speed restrictions — but perhaps surprisingly, a minimum rather than a
maximum speed limit would then have to be set — or tolls to be dependent on the speed
chosen. This is consistent with the finding of Rotemberg (1985). The optimum speed exceeds
the Nash equilibrium speed because a higher speed, via a lower density (for a given,
optimized flow), reduces accident risks. Similar results would be obtained if the regulator
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could control flow and density, instead of flow and speed. Conventional economic analyses
have focused on the control of one out of these three variables only, typically flow.

Our numerical model could reproduce speed-flow and fuel-use functions similar to
what is observed in reality, using — where possible — parameter estimates taken directly from
other sources. It suggests that the main efficiency losses that can be expected from using the
conventional reduced-form representation instead of a behavioural model would not be
primarily due to the setting of erroneous tolls. Instead, a more important source of
inefficiency would be due to the underestimation of welfare gains of congestion tolling using
the conventional approach, and the not unlikely consequence that congestion tolls would not
be put into practice at all. The model further suggests that speed policies indeed may be a
strong instrument in the regulation of flow congestion. Surprisingly, speed policies alone even
outperformed tolling alone in terms of efficiency gains. This conclusion becomes even more
noteworthy when realizing that it was obtained in a model in which road users are identical,
and choose the same speed in all equilibria considered. Speed policies could have been
expected to be relevant only for situations where a significant dispersion in speeds chosen
exists.

All in all, it seems worthwhile to investigate the trade-offs made by individual drivers
when choosing a speed in far greater (empirical) detail than has been done to date, so that a
more reliable empirical specification can be used to further investigate the empirical relevance
of our main qualitative findings. The numerical model used here only suggests that this
relevance could be great; it remains to be seen whether it indeed wil/ be great.
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Appendix: Existence and uniqueness of a Nash equilibrium

It is observed in the main text of the paper that (2a)-(2f) guarantee existence of a
unique positive solution to the individual driver’s optimisation problem and that in a Nash
equilibrium the speed of all drivers must be identical. We denote this individual equilibrium
speed as s*(S,k). It is a continuous and differentiable function of S. In order to show that a
unique Nash equilibrium exists, we have to establish that there is a unique speed, S*, for
which S“=s*(S*,k). In order to do this, we take a closer look at the function s*(S,k).
Start by observing that s* is always positive and finite. Assumption (2a) excludes the
possibility that there is a zero-speed equilibrium for individual drivers. This holds also for
S=0, and hence $“/=0 cannot be the equilibrium and s*(0,k) must be positive.
Next, consider ds*/dS. Given that s* is positive and finite for S=0 and that it is a continuous
function of S, we can be sure that there is a unique speed for which s*=S if the ds*/dS is
always less than 1."' From (3) we derive:

azcacc
ds* _ 0505
ds T d’c ) d’c Ab
time + acc
s’ 0s’

The denominator of the ratio on the right hand side of this equation is positive by the
convexity assumptions (2b) and (2f). The numerator gives the effect of an increase in the
speed of all other drivers on the marginal expected accident cost. If it is positive, ds*/dS is
negative and hence smaller than 1.

Assumption (4b) can be elaborated as follows:

2 2
a Cacc + a CHCC > O (A2)
0s’ 0S0s
and this implies:
2 2
0%, / 0 Cue g (A3)
0S0s 0s’

Using (Al), it is easy to verify that this ensures that ds */dS <1. Hence there exists a unique
Nash equilibrium.

" The assumption that ds*/dS is smaller than 1 is sufficient for the existence of a unique value S if both s and S
are restricted to a finite interval [0,s™“], with s a maximum possible speed. This condition is obviously
satisfied in reality and therefore not stated explicitly. (If the two speeds are not restricted to a finite interval, a
sufficient condition for existence and uniqueness would be that ds*/dS is smaller than 1-£ for some strictly
positive € and reasonable conditions that guarantee this could be introduced.)
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