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AN ECONOMETRIC ANALYSIS OF VOLUNTARY CONTRIBUTIONS: 
THE RANDOM EFFECTS TWO-LIMIT P-TOBIT MODEL 

 
ABSTRACT 

 
Contributions to public goods simulated in economists’ laboratory experiments have two 
peculiarities from the perspective of statistical modelling.  There is a variety of contributor 
behaviours (Ledyard, 1995), suggestive perhaps of separate classes of individuals, and 
contributions are doubly censored.  We present an econometric model of contributions in 
sequential play, which takes into account the censoring, admits variation both within and 
between individuals, and allows for the existence of a distinct class of free-riders.  The model 
synthesises the 2-limit tobit analysis of Nelson (1976), the extension of tobit to panel 
techniques by Kim and Maddala (1992) and the “p-tobit” hurdle model of Deaton and Irish 
(1984).  We estimate it for panel data from a public good experiment reported in Bardsley 
(2000).  It reveals pronounced inter- and intra-individual variation, and shows significant 
effects for subjects’ order in a sequential game, others’ contributions and the position of the 
choice task within the experiment.  These effects are plausibly attributable to egoism, 
reciprocity and learning respectively.  In addition, the existence of a distinct class of free-
riders, who conform to a game theoretic prediction of unconditional non-contribution, is 
confirmed.  The model is estimated for tasks in which “others’ behaviour” was controlled by 
the experimenter (but without using deception).  We compare its predictions for actual play 
(in which others’ behaviour is not controlled) with behaviour in a real game task. The 
predictions are consistent with the data. 
 
 
1.  Introduction 

In a typical public good experiment, each subject has to divide an endowment between a 

public account and a private account.  Total contributions are multiplied up by some factor 

and divided equally between the group of participants.  Davis and Holt (1993, ch.5) and 

Ledyard (1995) provide an overview of the data from such experiments.  Common findings 

include considerable variation in contribution across individuals, with a substantial 

proportion of subjects free-riding and a downward trend in contributions if the game is 

repeated.   

 

Data analysis usually takes the form of hypothesis testing within experiments, and 

occasionally meta-analysis across trials, though most designs employ study-specific 

manipulations.  Econometric modelling within experiments is generally precluded by non-

independence of contributions across subjects, since most public good experiments use a 

design which iterates a stage game, with subjects getting feedback between stages.  The 
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upshot is that there is usually only one independent observation per group.1 In the experiment 

modelled here, in contrast, each subject repeatedly performed a one-shot contribution task.  

There is reason to believe contributions in each task to be independent across subjects (see 

below), so a panel data model is appropriate.  The model adopted in this paper can distinguish 

between intra- and inter-individual variation, explores the extent of “reciprocity” and free-

riding, and estimates the effect of task repetition independently of any strategic effects of 

stage game repetition observed in other experiments.   

 

The statistical analysis of voluntary contributions is not straightforward.  Since they 

constitute a doubly censored dependent variable (subjects may contribute a minimum of 

nothing and a maximum of the endowment to the public account), a 2-limit Tobit model is 

required to estimate subjects’  responsiveness to experimental variables.  Also, several 

authors on voluntary contributions make a distinction between different types of agent; the 

clearest sub-class would appear to be that of free-riders.  (See, for example, Fehr and Gächter 

(1998), and Offerman, Sonnemans and Schram (1996).  See also Sugden (1984) where such a 

distinction is implicit.)  The model adopted in this paper identifies a subject as a free-rider if 

she displays a tendency to contribute zero which cannot be attributed to the values of the 

explanatory variables to which she was subjected.   

 

The next section describes the experiment, section three reviews the factors determining 

contributions, section four presents some basic descriptive statistics and section five  

describes the model.  Section six compares a simulation based on the model, which was 

estimated from tasks in which “others’   behaviour” was a controlled experimental variable, 

with data from a real game task, and section 7 concludes. 

 
2.  Experiment  

One aim of the experiment was to probe the inter-relatedness of subjects’  contributions.  In 

order to control the variable “others’ behaviour” without using deception, a “Conditional 

Information Lottery” (CIL) was deployed.  This experimental procedure, its justification and 

the basic results of the experiment are set out in detail in Bardsley (2000).  In a CIL, the real 

                                                 
1 In “strangers” treatments (after Andreoni (1988)), where group composition changes between rounds, there is 
only one independent observation per session. 
 



  

3 

game task is camouflaged amongst a set of controlled dummy tasks; conditional on a task’s 

being the real one, the task information describes the real situation (so “others’ behaviour” is 

as shown).  Subjects are told that only one task will constitute the real game, that in the other 

tasks “others’ behaviour” is an artefact of the design, and that only the real task is to be paid 

out.  In the other tasks, subjects “played” against a computer program, but these did not 

determine payoffs.  The procedure is analogous to the random lottery design used in 

parametric (non-interactive) choice tasks, with the difference that there is only subjectively a 

lottery over the task set; each task, from a subject’s point of view, has a chance of being the 

real one.  It is also has affinities with the strategy method.2 

 

In this environment, subjects ought to disregard information about others’ behaviour from 

task to task.  For in the experiment, subjects only see real behaviour once, and do not know at 

which point this is to occur.  It is therefore impossible for them to learn anything useful about 

others’ behaviour.  For if one believes the real task has already occurred, behaviour in the 

current task would have, ex hypothesi, no consequences.  Whilst the event that the task is real 

is the event that all previous and subsequent tasks are fictional.  So if one believes there is 

any possibility the task is real, determining consequences, and therefore wishes to behave as 

if it is real, one must regard the previous tasks as containing no information about others’ 

actions.  This point was emphasised to subjects before play.  Given that they understood this, 

contributions should be independent across subjects in the dummy tasks modelled below.3  

 

The payoff function was, in units of 40 pence tokens,  

 
n

w
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n

h
h
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∑
=+−= 1

2
10   (1) 

where Ci is an individual i’s monetary payoff, wi is their contribution to the public good and n 

= 7 is the number of players in a group.  The game was a sequential contribution public good 

game, in the sense that subjects decided one at a time how many tokens to contribute, after 

seeing the (supposed) contributions of any group members who came earlier in the sequence.  

Others’ contributions, in 16 tasks, were randomly generated as follows.  For each dummy 

                                                 
2 For discussion and an experimental exploration of the validity of the random lottery incentive system, see for 
example Cubitt et al (1998).  See also Brandts and Charness (2000) on the validity of the strategy method.   
3 And if not, since subjects only interacted once over a total of 30 tasks, the effects of this should be very dilute. 
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contribution, a draw was taken of a random variable with a beta distribution, which was then 

multiplied by ten and rounded to the nearest integer.  The distribution used (for an entire task) 

was either ( ) ( )31or  13 ,, ββ  with equal probability, implying a mean contribution of 75% or 

25% of the endowment respectively, and a standard deviation of approximately 2 tokens.  

Hence roughly half of these tasks showed high contributions from others and half of them 

low ones.  In these random stimuli tasks, a subject’s order in the sequence was determined 

with uniform probability.  In four other tasks, all subjects were placed in last position, and 

stimuli were used which were chosen to test specific conjectures about voluntary 

contributions.4 

 

3.  Expected Determinants of Contributions  

For a set of standard economic agents, who maximise a utility function of the form Ui(Ci), the 

sequential game has a unique Nash equilibrium consisting of a vector of zero contributions.  

If, on the other hand, an agent i suspects that for some other(s) j, 0>∂∂ ij ww , then there 

may be a self-interested contribution motive early in the sequence.  Let Ki denote the set of 

agents following agent i in the sequence.  There is an egoistic contribution incentive if 

( ) 1
2

−>∂∂∑
∈

n
ww

n

Kl:l
il

i

(which equals 2.5 in this experiment).  However, since as the sequence 

progresses there are less agents left to play, there should be less reason for egoists to 

contribute the later a subject’s position within the game.  Hence there should be an inverse 

relationship between contributions and subjects’ position in the sequence, ceteris paribus. 

 

Note that any such egoistic incentive is dependent on a belief that some agents exhibit 

reciprocity.  There is evidence that this is indeed the case in public good games (see 

Weimann (1994), Fehr and Gächter (1996), Croson (1999) and Fischbacher et al.  (1999) for 

examples).  In the model below, reciprocity is represented as an influence on contributions 

from the median of previous contributions within a task.  It is perhaps likely that these 

previous contributions give rise to two effects: reciprocity plus an impact on expectations 

(relevant both for forward looking reciprocity and egoism early in the sequence).  It would 

                                                 
4 The experiment also included the real sequential game, six binary contribution tasks and three simultaneous 
play tasks.   
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not be possible to separate these, however, without independent data on expectations which 

would have made the experiment considerably more cumbersome.   

 

There is another potential influence on a subject’s contribution decision (which varies in the 

experiment) to be expected from the existing literature.  Most repeated game experiments 

report that contributions decay over the course of play.  Candidate explanations comprise 

strategic reasoning and learning (either about the selfishly rational strategy or about others’ 

behaviour).  In the present context, the only of these which could provide a plausible 

explanation is learning about the (individually) cash maximising strategy.  For, as discussed 

above, subjects only interact once, and so ought not to make inferences about others’ 

behaviour, or (for the same reason) signal their own behaviour, across tasks.  Hence, the 

decay effect here is in agreement with the results of Andreoni (1988) (and others) who find 

declining contributions in repeated games in which group composition changes randomly 

between rounds - another setting where strategic factors are irrelevant. 

 

To summarise, the existing literature suggests that contributions in the game just defined 

should be affected by others’ contributions (reciprocity), a subject’s order in the sequence 

(egoism) and the position of the choice task within the experiment (learning), all of which 

were controlled experimental variables.  These presence of these effects was confirmed by 

the basic hypothesis testing reported in Bardsley (2000).   

 

The literature also suggests that there should be a distinct class of free-riders, who conform to 

the (game theoretic) cash maximising strategy of zero contribution.  The fact that the game is 

both one-shot and sequential enables an operational distinction to be made for the first time 

between egoistic contributors and full free-riders.  For some subjects may contribute at the 

start of a sequence but not at the end, whereas a full free rider never contributes (which is the 

nash equilibrium strategy).  One cannot observe such a distinction in one-shot simultaneous 

play games since there is no egoistic contribution motive, nor in repeated games since 

subjects might decrease contributions at the end of the game in the expectation of similar 

behaviour by others, even if they are in fact bona fide reciprocators. 
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4.  Exploratory data analysis 

98 subjects were observed over the 20 tasks.  It is revealing to examine the pooled 

distribution of contributions.  A histogram of this variable is shown below (figure 1).  The 

histogram clearly reveals censoring at zero, and to a lesser extent, censoring at the upper 

limit, 10. 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

Figure 1 

 

The overall mean contribution was 2.711, compared with a median of 1.0, this difference 

confirming the clear positive skew evident in the histogram.  It is useful to investigate how 

the mean varies at different positions of the ordering within the group, and these means are 

shown in table 1 below: 

 
Position in group (ORD) MEAN 
1 4.10 
2 3.25 
3 3.40 
4 3.02 
5 2.96 
6 2.27 
7 1.72 
overall: 2.71 

 
Table 1 
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The numbers in table 1 clearly reveal that contributions tend to fall as the task progresses, 

with the subject in seventh place typically contributing less than half of the contribution of 

the first mover.  The precise dynamics of this downward trend will be revealed in the 

estimation of our econometric model in the following section. 

 

5.  The Random Effects 2-Limit P-Tobit model 

For the purpose of the theoretical model, let us assume that there are n subjects, each of 

whom has been observed over T tasks.  Let wit be the observed contribution by subject i in 

task t.  The variable wit has a lower limit of 0 and an upper limit of 10.  The two-limit tobit 

model (see Nelson, 1976), with limits 0 and 10, is therefore appropriate. 

 

The underlying desired contribution is wit* and this is assumed to depend linearly on a set of 

explanatory variables which are contained in the vector: 
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where ORDit is subject i’s position in the group for the t’th task solved, I(.) is the indicator 

function (taking the value 1 if the subscripted expression is true, 0 otherwise), MEDit is the 

median of previous contributions by other subjects in the group (not defined when ORD=1), 

and TSKit is the task number (TSK is not the same as t, since some of the tasks are part of a 

separate experiment).  The reasons for choosing this set of explanatory variables will become 

clear when the results are interpreted.  Let ( )',,, 4321 βββββ =  be the parameter vector 

associated with the vector xit defined in (2). 

 

The intercept in this linear equation is assumed to vary randomly with a normal distribution 

across the population of subjects.  This assumption leads us to a model similar to the random 

effects tobit model (Kim and Maddala, 1992). 
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A proportion of the population p are assumed to be “free-riders”.  Their contribution is 

always zero, whatever the values contained in xit.  Let di* = 1 if subject i is a free-rider, 0 

otherwise, so pdP i == )1*( .  With the parameter p, the model may be referred to as the 

random effects 2-limit p-tobit model.  The “p-tobit model” was introduced by Deaton and 

Irish (1984) in models of household consumption, in which the parameter p would represent 

the probability of abstention by the consumer from the good in question. 

 

We specify the following latent model for the desired contribution: 

 

p)*d(P

),(N~

),(N~

'x*w

i

i

it
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 (3) 

The relationship between desired contribution wit* and actual contribution wit is specified by 

the following censoring rules: 

 

 :0* =idIf  
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 :1*=idIf  

 twit ∀= 0  (4b) 

 

The likelihood function may now be constructed.  Conditional on 0*=id , we have the 

following likelihood contributions for a single response, where Φ(.) and φ(.) are the standard 

normal c.d.f.  and p.d.f.  respectively: 

 

 Regime 1 (w = 0): 
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 Regime 2 (0 < w < 10): 
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 Regime 3 (w = 10): 

 
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In addition we know that: 

 1),1*|0( === iiit dwP α  (6) 

 

Let 1=id  if t0y it ∀= ;  0d i =  otherwise.  Thus di is an indicator of whether subject i 

chooses to donate zero on every occasion.  Note the distinction between di and di*.  di could, 

possibly as a result of extreme values in the explanatory variables, take the value one in a 

situation in which subject i is not a free-rider. 

 

The Likelihood contribution (conditional on αi) for subject i is: 

 

( ) ( ) ( ) ( ) )10(

1

)100()0( |10||0)1()1( =

=

<<= ==−+== ∏ ititit wI
iit

T

t

wI
iit

wI
iitiii wPwfwPpdpIG αααα

 

 (7) 

where I(.) is the indicator function, and the three terms appearing in the product are defined 

above. 

 

The marginal likelihood for subject i is: 

 

 
( ) ( ) iiiii dfGF αηµαα ,|∫

∞

∞−

=
 (8)

 

 

where ( )ηµα ,|if  is the normal ( )2,ηµ  density function evaluated at αi. 

 

The sample log-likelihood is: 
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( )∑

=

=
n

i
iFLogL

1

ln
 (9) 

 

LogL is maximised using the MAXLIK routine in GAUSS, to obtain MLEs of the 

parameters: β, σ, µ, η and p.  The GAUSS quadrature routine INTQUAD1 is used to evaluate 

the integral appearing in (8). 

 

The results are contained in table 2 below.  Three models, of varying generality, have been 

estimated.  According to the maximised likelihood, and Wald tests of the significance of 

added parameters, the most general of the three, the random effects 2-limit p-tobit model, is 

clearly superior.  The results from this model are interpreted below. 

 

 

The regression part of the model is estimated as: 

 

( ) ( )
( ) ( )1076036405311

174806245

11 −−∗+−
−−=∗

>> TSK.MEDI.I.

ORD..TSK,MED,ORD|wE

ORDORD

  (10) 

 

The explanatory variable vector (xit defined in (2)) was chosen so that the parameter µ, 

estimated as 5.624, can be conveniently interpreted as the intercept (i.e.  expected 

 Pooled 2-limit 
tobit 

Random effects 2-
limit tobit 

Random effects 2-limit 
p-tobit 

ORD-1 -0.759(0.081) -0.740(0.058) -0.748(0.059) 
I ORD>1  -1.556(0.562) -1.542(0.406) -1.531(0.409) 
IORD>1  * MED 0.378(0.045) 0.360(0.033) 0.364(0.033) 
TSK-1 -0.070(0.016) -0.075(0.011) -0.076(0.011) 
σ 5.522(0.145) 3.615(0.093) 3.629(0.093) 

µ 4.518(0.451) 4.105(0.531) 5.624(0.486) 
η - 4.659(0.267) 3.343(0.298) 
p - - 0.138(0.036) 
    
n 98 98 98 
T 20 20 20 
    
LogL -3770.37 -3248.99 -3235.39 

Results of maximum likelihood estimation 
Asymptotic standard errors in parentheses 

Table 2 
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contribution) of a first mover in task 1.  Note that a different intercept applies to other players 

due to the presence of the parameter β2, estimated as -1.556.  The presence of this shift 

parameter is essential because, otherwise, a zero effect of the variable MED would be 

erroneously imposed upon first-movers, for whom MED is not defined.  The second mover’s 

(task 1) expected contribution is, in fact: MED.. 36403453 + , where MED is the first mover's 

contribution.  The third mover’s (task 1) expected contribution is: MED.. 36405972 + , where 

MED is computed from the first two movers, and so on. 

 

All of the explanatory variables show impressively strong significance.  As anticipated, the 

effect of ORD is significantly negative, each subject being predicted to donate 0.748 LESS 

than the previous player, ceteris paribus.  The effect of MED is significantly positive, and 

implies that if all of the previous contributions were raised by one, the current subject’s 

contribution is expected to rise by 0.364.  The effect of TSK is significantly negative, simply 

implying a diminution of contributions with experience. 

 

The proportion of free-riders in the population (p) is estimated as 0.138. 

 

A diagrammatic representation of the model is useful for presenting the predictions of 

contributions against position in the group; this is given in figures 2 and 3 below. 
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Figure 2 shows, for a representative task,5 the predicted response of a non-free-rider against 

position in the sequence, for a median contribution from others of 3 and 9 tokens.  It shows 

the comparative static effects of MED and ORD.  Hence if ORD = 3 and MED = 3 the 

expected contribution is approximately 2.6 tokens given TSK = 15.  Suppose instead that 

MED = 9.  Then if ORD = 3 the predicted response is 4.8 for that task, whilst if ORD = 7 

(and MED = 9) it is lower (1.8 tokens).   

 

Figure 3 mainly serves to illustrate the rôle of the model’ s random effect term, αi, which 

represents between-subject variation.  It shows the distribution of subjects around the 

representative response when the median is 3 tokens.  Since ),(N~i
2ηµα , 50% of non-free 

riders’ mean responses lie above the line, 50% below, 68% within the bold lines and 99% 

within the dotted lines. 

 

6.  Comparison of Real and Simulated Games 

A rough check on the performance of the model can be obtained by comparing predictions 

from the model with actual behaviour in the real game task.  Recall that the model was 

estimated only for the tasks in which subjects were playing with experimenter-generated 

“others”.  The difference between a real task and a task with artificial stimuli is that a 

subject’s decision in the latter cannot affect what another subject does.  Whereas in the real 

task, it may indeed affect the decision of a player coming later in the sequence; this is what 

the model estimated from the dummy tasks actually predicts.  The experiment produced data 

for one real game per group, hence 14 independent observations of the real game.   

 

In order to compare the model’s predictions with the results of the real game, we simulated 

the former as follows. A value is drawn from the model for a first mover’s contribution; with 

probability p = 0.138 (from table 2) this is 0 (from a free-rider). Otherwise, it is determined 

by a draw from the distribution of the intercept, iα , and from the distribution of the “within” 

parameter, itε , then adjusted by the determinants ORD-1 and TSK-1 using the coefficients 

from table 2.  The resulting value determines MED for the second mover.  With probability p 

the second mover is a free-rider; otherwise their contribution is drawn from the model.  The 

                                                 
5 There were 30 tasks in total.  The median value of TSK is therefore 15.5. 
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first and second movers’ simulated contributions determine MED for the third mover, and so 

on.  The results of a computed simulation of 000 10  independent groups are given in table 3 

below (figures in experimental tokens, 1 d.p.):6 

 

 Real (N=14)  Simulated 

ORD Mean Median  Mean Median 

1 4.9 5  5.2 6 

2 2.1 0.5  3.7 3 

3 1.9 0.5  3.1 2 

4 2.8 3  2.5 1 

5 2.4 0.5  2.1 0 

6 1.8 0.5  1.6 0 

7 1.6 0  1.3 0 

      

Mean group total 15   19.5 

Standard deviation of 

group total 

 

11 

   

10.8 

Contributions By Order in the Sequence: Real and Simulated  

Table 3 

 

Although the low sample size for the real data allows only tentative conclusions to be drawn, 

the model’s prediction concerning total contributions is consistent with the real data (the 

simulated mean group total of 19.5 tokens falls within the 90% confidence interval for group 

total constructed from the real sample), and also the diminution effect which it predicts is 

clearly observed within the real game.7  There is perhaps a suggestion that the diminution is 

not monotonic across the values of ORD as predicted by the model, a matter which might be 

investigated by further experimentation. 

 

7.  Conclusions 

The model confirms the existence of a distinctive class of free-riders, who constitute 

appromimately 14% of all subjects, and reports highly significant effects for ORD, MED and 

TSK, as expected.  Those coefficients are plausibly interpretable as effects of egoism, 

                                                 
6 The simulation used 19 for the value of TSK since this was its mean value for the real tasks in the experiment.   
7 The difference between contributions in first and last positions is significant at the 5% level (2 sample t-test) -  
see Bardsley (2000).   
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backward-looking reciprocity and learning (about the mapping from actions to payoffs) 

respectively.  The coefficient for MED is less than one, implying a decay during sequential 

public good games independently of the effect of a subject’s position in the sequence.  This is 

also consistent with the biased reciprocity observed in Fischbacher et al (1999) (biased in the 

sense that subjects, although influenced positively by the contributions of others, tend to 

donate less than the levels contributed by others), which, as the authors point out, may be 

responsible for the usually-observed decay of contributions in (simultaneous play) repeated 

game public good experiments.  The model was estimated for controlled tasks but predicts 

behaviour consistent with that found in the real game tasks, in particular anticipating the 

observed decay of contributions across the sequence. 

 

A novel observation made possible by the use of panel data techniques is the substantial 

amount of intra-individual variation (ó).  This might be interpreted as error, but other 

possibilities include subjects’ experimentation or, more subversively, a stochastic element 

distinguishable from error.  The latter might be seen as a response to value conflict, since in 

the public good game there are various reasons for action (the literature suggests, say, 

considerations of egoism, equity, collective rationality and reciprocity) which might appeal to 

subjects at different times during the trial.  This would be a radical “random preferences” 

process, in which the underlying model of choice is the object of randomisation.8 

 

The sequential game enables observation of both egoistic contribution and pure free-riding.  

Egoistic contributors give at the start of a sequence but not at the end, even if others have 

given large amounts to the public good.  The model reports a high degree of egoism, distinct 

from complete free riding.  For by the end of the experiment (TSK = 30), first movers' 

contributions are centred on 3.4.  However, even if the median of others’ contributions is as 

high as 8, a typical “non-free-rider” would give 0 tokens in last position (that is, with ORD = 

7); of the ≈84 non-free riders observed, roughly half would give nothing, whilst ≈14 subjects 

would free-ride anyway.  Notwithstanding this, there should still be many subjects 

contributing in such a task, because of the within- and between- subject variation; 34% of the 

                                                 
8 We owe this suggestion to Michael Bacharach.  The term “random preferences” is taken from Loomes and 
Sugden (1995).  There, however, the phrase refers to the incorporation of a stochastic element into a given 
model of choice. 
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≈84 non-free riders would be predicted to have contributions centred between 0 and 3.2 

tokens, with 16% having donations centred higher than 3.2.  However, it is estimated that 

virtually no one’s donation in this situation is centred as high as the representative 

contribution from others (8 tokens).  It is an open question whether the class of “free-riders” 

identified by the parameter p have “solved” the game as envisaged by game theory, or simply 

overlooked the possibility of triggering reciprocal contributions from subsequent players. 

 

To sum up, estimation of laboratory contributions as a function of others’ donations, 

experience and position within a sequential game confirms the importance of reciprocity, 

learning and egoism in laboratory public goods settings.  The censoring of contributions, 

particularly at zero, is a marked feature of the data, necessitating a tobit model.  A fruitful 

distinction can be made in a sequential context between egoistic contributors and full free-

riders.  There is substantial variation in behaviour both between and within individuals.  

Positive reciprocity has a relatively weak impact on contributions.  In the sequential game 

studied here, this contributes to a diminution of contributions across the sequence, whilst in 

the more usual repeated game settings, with simultaneous play, it is a probable cause of their 

decay across stage games. 
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