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Scoring Bank Loans That May Go Wrong: a

Case Study

J.S. Cramer �

October 20, 2000

Abstract

A bank employs logistic regression with state-dependent sample

selection to identify loans that may go wrong. Inspection shows that

the logit model is inappropriate. A bounded logit model with a ceiling

of (far) less than 1 �ts the data much better.

1 Introduction and summary

Each year, a Dutch bank grants many thousands of loans to small and

medium-sized �rms. At the time the loans are made a number of stan-

dard �nancial ratios of the debtors are recorded. Upon review two years

later about 3% of them are found to have moved into the danger zone by

making substantial losses or by a large fall in their solvency. These loans

are classi�ed as (potentially) bad loans and subjected to a regime of close

control.

The distinction between good and bad loans (or debtors) is used in a

statistical analysis to link the probability of a loan going bad to the initial

�nancial ratios of the debtor. The estimated risk is then used to score all

loans and to establish a classi�cation that will help local account managers

to concentrate their e�orts of supervision and control where they are most

�University of Amsterdam and Tinbergen Institute, Keizersgracht 482, 1017 EG Am-

sterdam; e-mail mars.cram@worldonline.nl. I have bene�ted from comments on earlier

versions of this paper by Aernoud Boot, Herman van Dijk, Martin Fase, Hans van Ophem

and Jan Sandee.
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needed. The method of analysis employed is a routine �tting of a logit model

to a selected sample composed of all bad loans and an equal number of good

loans drawn at random from this group.

In the present instance it is found this method of analysis does not work.

The reason is misspeci�cation of the model: the incidence of bad loans does

not obey a logit distribution. The introduction of a ceiling or maximum risk

provides an easy remedy.

Two lessons can be drawn from this example. The �rst is that the plain

logit model does not always apply; a routine goodness-of-�t test is therefore

advisable. The second is that the routine estimation technique of a logit

model from a state-dependent selected sample is quite sensitive to misspeci-

�cation.

The principles of sample selection and their application to the logit model

are recalled in section 2. The failure of this method in the present instance is

described in section 3. Section 4 presents the simple alternative of a bounded

logit function, which works well.

2 Estimation with state-dependent sample selection

We consider a large sample of binary 0; 1 outcomes Yi. The focus is on Yi = 1,

which has a low incidence, while the complement Yi = 0 is abundant: here,

Yi = 1 represents a bad loan and Yi = 0 a good loan. The model speci�es

the probability that i is a bad loan as a function of regressors xi as

P (Yi = 1jxi) = P
�(�; xi) = P

�

i : (1)

We wish to estimate � from a selected sample, discarding a large part of

the abundant zero observations for reasons of expediency. Suppose that the

initial full sample is a random sample with sampling fraction � and that

only a fraction 
 of the zero observations (taken at random) is retained. The

probability that element i has Yi = 1 and is included in the sample is

�P
�

i ;

but for Yi = 0 it is


�(1� P
�

i ):

By Bayes rule, the probability that an element of the selected sample has

Yi = 1 is then

~
Pi =

P
�

i

P
�

i + 
(1� P
�

i )
: (2)
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The likelihood of the observed sample is easily expressed in ~
Pi. Since 
 is

a known constant, substitution of (1) into (2) gives ~
Pi as a function of �

alone. The parameters of any speci�cation (1) of P �

i can thus be estimated

by standard Maximum Likelihood methods.

Estimation is particularly easy in the special case that (1) is a logit model,

for then

P
�

i =
exp(xT

i �)

1 + exp(xT
i �)

(3)

so that (2) becomes

~
Pi =

exp(xT
i �)

exp(xT
i �) + 


(4)

or

~
Pi =

1=
:exp(xT
i �)

1 + 1=
:exp(xT
i �)

=
exp(xT

i � � ln
)

1 + exp(xT
i � � ln
)

: (5)

Thus the ~
Pi of the selected sample also follow the logit model, and apart

from the intercept the same parameters � apply as in the logit model for the

full sample. Standard programmes for �tting a logit model may therefore be

applied directly to the selected sample, and they will give proper estimates

of the slope coeÆcients of the model (3) for the full sample. If needs be, its

intercept can be retrieved by adding ln
 to the intercept of the selected sam-

ple. But if the analyst is primarily interested in odds ratios or in the ordering

of observations by the estimated probabilities, the value of the intercept is

of no concern. Since the slope coeÆcients can be estimated if 
 is unknown,

the sample may then even be constructed by drawing observations on the

two outcomes from separate sources with unknown sampling fractions. This

is common practice in the case-control studies of medical research.
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Conditions that call for state-dependent sample selection occur in many

�elds. A common example is that there is a very large sample with a low

incidence of Yi = 1, and that it is expedient to discard a major part of the

abundant zero observations. In the case under consideration the bank has

�les on over twenty thousand bank loans with only six hundred bad loans.

Similarly, Palepu (1986) examines 163 �rms that have been the subject of of

a takeover bid among a total of 2217 eligible �rms �rms listed on the stock

exchange. In direct marketing, mail campaigns yield only a small number of

responses from a vast data base of potential customers. In all these cases it

can be advantageous to use all observations with Yi = 1 in combination with a

fraction of the surfeit of zero observations. In epidemiology, a given number

of cases of a particular disease (or treatment) is likewise supplemented by

controls that can be recruited in any number; but here there is no natural

framework of a random sample to begin with, and the sampling fractions and

their ratio 
 are unknown. The same theoretical argument, brie
y set out

above, applies to all these cases. There is a vast literature on the subject. In

statistics, Anderson wrote already in 1972 about combining separate samples;

in econometrics, Manski and Lerman introduced the term state-dependent or

choice-dependent sampling in 1977; in epidemiology, the method is known as

case-control studies, see the surveys by Breslow and Day (1980) and Breslow

(1996).

Until recently, a major motive for using only part of the available infor-

mation was computational expediency, but with present computing power

this argument has lost its strength. But if the zero observations still have

to be collected, or if additional information for these data must be obtained,

cost considerations may dictate restraint. In practice, there is a strong tra-

dition of using equal numbers of observations of the two outcomes, probably

for reasons of symmetry. One may of course improve precision by increasing

the number of zero observations within reason; as a rule of the thumb there

is however little additional precision to be gained from going beyond 3 or 4

times as many controls as cases (Breslow and Day (1980), p.27; Cramer et

al (1999)).
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3 Logit analysis of bank loans

The original full sample of bank loans consists of 20816 loans from a single

year. Two years later, 627 loans are identi�ed as bad loans and 20189 as

good loans. The bank performs a routine logit analysis on a selected sample

of 1254 loans, with the bad loans supplemented by an equal number of good

loans drawn at random from that group. The regressors are �ve �nancial

ratios of the debtor �rm recorded two years ago, suitably scaled, viz.

. solvency;

. rentability;

. working capital ratio;

. cash 
ow coverage;

. stocks (a dummy variable)

The initial aim of the present study was to assess the e�ect on the esti-

mates' precision of adding larger numbers of zero observations or good loans

to the 627 bad loans. To do this the 627 bad loans were supplemented by

independent samples of increasing size from the good loans, their numbers

increasing with multiples K of 627 observations. They thus range from the

standard case of 627 (or K = 1) to 20819 (all, or K = 33). Plain logit

analyses were then performed on this series of samples.

The successive selective samples are not independent, for they share the

same bad loans. As the sample size increases, the estimates of the slope

coeÆcients will of course converge to the values for the full sample. By the

arguments of Section 2 they may be expected to show some erratic 
uctu-

ations, but no strong systematic variation. But Table 1, which gives the

results, shows that the estimates do not behave in this way: they all exhibit

a steady and systematic movement with the factor K that governs sample

size, and the coeÆcients for the standard case K = 1 are quite far removed

from the �nal result. In the present instance the state-dependent sample se-

lection technique introduces a severe bias, and this is of more urgent concern

than the course of the standard errors.
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Table 1. Estimated logit coeÆcients, selected samples of various sizes

(standard errors in brackets)

K 1 2 3 5 10 20 all

sample size 1254 1881 2508 3762 6897 14617 20816

solvency -2.32 -1.22 -1.19 -.85 -.73 -.60 -.49

(.32) (.29) (.25) (.19) (.15) (.12) (.09)

rentability -1.30 -.72 -.89 -.57 -.48 -.60 -.43

(.37) (.31) (.28) (.26) (.18) (.13) (.12)

working capital -1.38 -1.26 -1.05 -1.30 -1.10 -.96 -.90

(.30) (.23) (.23) (.19) (.17) (.14) (.12)

cash 
ow cov -1.72 -2.82 -3.45 -3.69 -3.67 -2.45 -2.60

(1.12) (1.09) (1.29) (1.14) (.82) (.49) (.40)

stocks .14 .25 .34 .21 .27 .35 .33

(.21) (.19) (.17) (.17) (.15) (.15) (.15)

Since the results for a single standard sample with K = 1 may be at-

tributed to chance (though the systematic variation of Table 1 can not), this

particular sample has been replicated 100 times, and the size of the bias

established from the mean estimate. Table 2 shows that the single example

in Table 1 was indeed rather unfortunate; but still the best that can be said

about the two sets of estimates from the replicated small sample and the

overall sample is that they have the same sign - and these signs agree with

what one would expect from the nature of the variables. For four out of �ve

coeÆcients the estimates from the standard selected sample di�er from the

�nal values by a factor 2 or 3.
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Table 2. Mean estimates of 100 replications for K = 1 1

100 selected full ratio of

samples, K = 1 sample estimates

solvemcy -1.65, .34 -.49 3.4

(.34) (.09)

rentability -.93, .25 -.43 2.2

(.39) (.12)

working capital -1.41, .22 -.90 1.6

(.28) (.12)

cash 
ow cov -2.96, .86 -2.60 1.1

(1.52) (.40)

stocks .13, .07 .33 .4

(.20) (.15)

The only substantial assumption of section 2 is that the observations in

the population or in the full sample satisfy the logit model. The failure of the

method can therefore only be due to the failure of this assumption. This can

be veri�ed by the goodness-of-�t test of Hosmer & Lemeshow (1980, 1989).

The observations are ordered into J classes of equal size by the estimated

probability P̂i, and for each class the expected frequency of bad loans is

determined (this is simply the sum of the estimated probabilities). This is

compared to the actual frequency. The test statistic is

C =
X (yj � nj

�
Pj)

2

nj
�
Pj(1� �

Pj)
(6)

with nj the number of observations in class j, yj the actual number of bad

loans in the class and �
Pj the mean estimated probability for the class. The

null hypothesis is that the observations have been generated by a logit model

as used in estimating the P̂i. Under this null, C has a chi-square distribution

with J � 2 degrees of freedom.

1The numbers in brackets are standard errors derived from the mean variance of 100

replications, the numbers after the means are standard errors among the replications.
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Table 3 shows expected and actual numbers of bad loans in 10 classes of

the full sample of 20816 observations. The test statistic C of (6) is 164.35,

which is highly signi�cant at 8 degrees of freedom: the logit model is soundly

rejected. Inspection indicates severe discrepancies, with overestimation by

the model in the lower ranges and underestimation in the two highest classes.

Table 3. Expected and actual number of bad loans in full sample,

ten classes of expected probability according to �tted logit

highest P̂i nr of expected actual

in class observations nr of bad nr of bad

loans loans

.0100 2082 11 7

.0158 2081 27 6

.0198 2082 37 13

.0229 2081 45 17

.0258 2082 51 31

.0286 2082 57 36

.0317 2081 63 51

.0359 2082 70 63

.0443 2081 82 158

.9148 2082 185 245

This is further illustrated in Figure 1. The expected and actual numbers

of bad loans in each class of Table 3 have been converted into frequencies,

and these have been plotted against the argument of the logit function, the

log-odds ratio of the expected probability, or

zj = log( �Pj=(1� �
Pj)):

This is the term x
T
i �̂ of (3) that drives the �tted logit function. The ex-

pected frequencies therefore follow this logit function by construction; since

the overall frequency of the present sample is only 3%, the smooth line rep-

resents the far left-hand tail of the logit. In contrast, the actual frequencies

appear to trace a far larger and much more central part of the same sigmoid

shape, if on a miniature scale.
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Figure 1. Expected and actual frequency of bad loans from Table 3
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The above test bears on the full sample, that is the logit estimated in

the last column of Table 1, but the same goodness-of-�t test can be applied

to a selective sample; by the argument of Section 2 this should also obey

the logit model if the random sample does. Table 4 gives the result for

the standard selective sample of 1254 observations of the �rst column of

Table 1. The expected probabilities are of course much higher than in the

full sample, precisely because the number of observations has been reduced

selectively. The total number of bad loans (both actual and expected) is

still 627, but the sample proportion is 50% as against 3% in the full sample.

The discrepancies in Table 4 are less pronounced than in Table 3, and the

value of the test statistic C is only 65:62, but this is still quite signi�cant.

The logit model is also rejected on the basis of the sample constructed by

state-dependent selection.
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Table 4. Expected and actual number of bad loans in selected sample, K = 1,

ten classes of expected probability according to �tted logit

highest P̂i nr of expected actual

in class observations nr of bad nr of bad

loans loans

.1617 125 12 9

.2731 126 28 17

.3496 125 39 30

.4228 126 49 43

.4938 125 57 50

.5545 125 65 72

.6296 126 75 94

.7280 125 85 102

.8618 126 100 106

.9999 126 118 164

4 A bounded logit function

The failure of the logit function is a matter of the functional form of the

probability function (1). In the search for something better we may take a

second look at the pattern of the incidence of bad loans of Figure 1, even

though it must be realized that the classi�cation of the observations has

been determined by the plain logit probability which turned out to be a

misspeci�cation. As we remarked before the actual frequencies appear to

trace out a large part of a logit curve, if on a miniature scale. This suggests

that they will be adequately described by a simple modi�cation of the model,

namely

P
o
i = !

exp(xT
i �)

1 + exp(xT
i �)

: (7)

In this model, the logit function is bounded by an upper limit ! of the

probability that a loan is a bad loan. Conversely, a fraction 1 � ! of all

loans is always a good loan, regardless of the values taken by the regressor

variables. The logit mechanism applies only to a fraction ! of the population.
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This model can be estimated by standard Maximum Likelihood methods,

though the routine is not generally available in statistical packages (in con-

trast to the plain logit) and the analyst will have to do some programming.

It has been �tted to the full sample, and the estimates are given in Table

5. The slope coeÆcients are of course not directly comparable to those of

the plain logit, but the elasticities at the sample mean are; apart from the

rather erratic coeÆcient of cash 
ow coverage they show no great di�erences.

A likelihood ratio test of the bounded logit vis-a-vis the plain logit con�rms

that the additional parameter ! makes a di�erence: the loglikelihood of the

bounded model is �2425 against �2594 for the common logit model of Ta-

ble 1. The single extra parameter leads to a quite signi�cant increase in

likelihood.

Table 5. Estimates of bounded logit model, full sample

coeÆcient elasticity elasticity

bounded bounded plain

logit logit logit

ceiling ! .14 (.01)

solvemcy -4.20 (.41) -.17 -.14

rentability -1.80 (.50) -.05 -.09

working capital -2.97 (.34) -.03 -.06

cash 
ow cov -3.27 (2.11) -.05 -.26

stocks .27 (.23)

Table 6 gives Hosmer and Lemeshow's goodness-of-�t test for the bounded

logit. For the computation of the test statistic C the �rst three classes are

merged, for otherwise the numbers would be too small; C is then 5:38, and

this has six degrees of freedom. The bounded logit model is not rejected.
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Table 6. Expected and actual number of bad loans in full sample,

ten classes of expected probability according to �tted bounded logit

highest P̂i nr of expected actual

in class observations nr of bad nr of bad

loans loans

loans loans

.0009 2082 1 5

.0030 2081 4 4

.0060 2082 9 7

.0100 2081 17 20

.0155 2082 26 21

.0233 2082 40 37

.0337 2081 59 51

.0510 2082 86 80

.0870 2081 135 152

.1374 2082 247 250

The bounded logit model can also be estimated (and tested) from state-

dependent selected samples, provided the constant 
 in (3) is known; these

calculations demand some further programming by the analyst. In the

present case it was found that the estimates for a series of samples of varying

size, as in Table 1, do not show the systematic variation that was observed

for the common logit. The model also passes the goodness-of-�t test for the

selected sample for K = 1.

In short, the bounded logit passes the tests that the common logit failed.

In the present case it is a superior descriptive device. But it is not so easy to

think of a theoretical or intuitive justi�cation. The present model is a special

case of the general extension of a discrete bivariate model like the logit or

probit with �xed probabilities for either or both outcomes. These are some-

times introduced to allow for speci�c errors of measurement or recording,

sometimes because it is believed that other factors are at work besides the

stochastic mechanism under scrutiny. In the classic bio-assay studies the pro-

bit model describes the e�ect of an insecticide; an extra constant probability

term may be added to represent natural death, not induced by the poison.

This example of Finney (1964) is quoted by Hausman et al (1998), who in-

troduce a similar additive probability to take care of errors of observation.
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And there may of course be two such terms, one for each outcome; see the

application to marketing data of Hsiao & Sun (1999). But these arguments,

usually adduced for quite small constant additive probabilities, do not apply

in the present case.

In the present case we must have recourse to the argument that the

standard screening of applicants by the bank ensures that no debtor ever

has a probability of more than ! (here only 14% !) to drift into the bad

loan category. It can, however, be objected that the e�ect of this screening

is already apparent in the favourable values of the regressor variables, as

re
ected by the positioning of the entire sample at the lower tail of the

logit function (see Figure 1). The screening argument must mean that the

probability is con�ned to values below :18 because of other characteristics

of the debtor, like business talents or innate honesty. It is well known that

bank managers liberally employ criteria of this nature rather than accounting

ratios. Still, I �nd this justi�cation of an upper bound of only :14 hard to

accept.

5 Concluding remarks

There are two lessons to be drawn from this case study. The �rst is that

some simple binary attributes do not follow the logit model distribution.

The goodness-of-�t test of Hosmer and Lemeshow will detect this, and this

test should be employed as a matter of routine. But while the bad loans of a

Dutch bank do not obey the logit model, other binary outcomes still do; in

an earlier paper (Cramer (1999)) I examined two marketing data sets along

with the bank loans, trying out several other 
exible variants of the logit

model as well, and bank loans were the only case where the plain logit failed.

The second lesson is that the selected sample method for the logit model

gives quite wildly erroneous results in case of misspeci�cation. This is already

known from much earlier studies by Scott and Wild (1986) and by Xie and

Manski (1989). It does not mean that the principles of the selected sample

method do not apply, but that one should not use the logit short-cut if the

logit model does not apply. Xie and Manski show that the use of the logit

as a general approximation to any bivariate model is much better served

by the weighted Maximum Likelihood technique; moreover any model and

in particular any modi�cation of the logit model can be estimated from a

selected sample by the route sketched in Section 2.

In theory the practical conclusions are clear: test the �t of the logit model
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(if necessary on a selected sample); if it is rejected try a modi�ed model

(if necessary on a selected sample), or, failing this, estimate the logit by

weighted Maximum Likelihood. But these straightforward prescriptions can-

not be implemented in the standard statistical packages like SPSS, STATA

or LIMDEP. They either demand programming from scratch in languages

like Gauss or Ox or at least the speci�cation of the loglikelihood (and its

derivatives) for a ready-made Maximum Likelihood routine. And this deters

most analysts from probing further.
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