
TI 2000-064/2 
Tinbergen Institute Discussion Paper 

                      
Cross- and Auto-Correlation Effects 
Arising From Averaging  

 Winfried G. Hallerbach  
 

 

 

 
 
 
 



 
 

Tinbergen Institute 
The Tinbergen Institute is the institute for economic research of  the 
Erasmus Universiteit Rotterdam, Universiteit van Amsterdam and  
Vrije Universiteit Amsterdam.  
 
 
Tinbergen Institute Amsterdam 
Keizersgracht 482 
1017 EG Amsterdam 
The Netherlands 
Tel.: +31.(0)20.5513500 
Fax: +31.(0)20.5513555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31.(0)10.4088900 
Fax: +31.(0)10.4089031 
 
 
 
Most TI discussion papers can be downloaded at  
http://www.tinbergen.nl  

 



Cross- and Auto-Correlation Effects

Arising From Averaging:

the Case of US Interest Rates and Equity Duration

Winfried G. Hallerbach *)

first draft: May 12, 2000
this version: July 5, 2000

*) Erasmus University Rotterdam and Tinbergen Research Institute & Graduate School of
Economics, POB 1738, NL-3000 DR  Rotterdam, The Netherlands.  Phone:
+31.10.408-1290, facsimile: +31.10.408-9165.  E-mail: hallerbach@few.eur.nl , web
page: http://www.few.eur.nl/few/people/hallerbach/
I’d like to thank Michiel de Pooter for his conscientious computational assistance.



2

Abstract

Most of the available monthly interest data series consist of monthly averages of daily
observations. It is well-known that this averaging introduces spurious autocorrelation
effects in the first differences of the series. It is exactly this differenced series we are
interested in when estimating interest rate risk exposures e.g. This paper presents a method
to filter this autocorrelation component from the averaged series. In addition we
investigate the potential effect of averaging on duration analysis, viz. when estimating the
relationship between interest rates and financial market variables like equity or bond prices
or exchange rates. In contrast to interest rates the latter price series are readily available in
ultimo month form. We find that combining monthly returns on market variables with
changes in averaged interest rates leads to serious biases in estimated correlations (R2),
regression coefficients (durations) and their significance (t-statistics). Our theoretical
findings are confirmed by an empirical investigation of US interest rates and their
relationship with US equities (S&P 500 Index).

Key words : interest rates, duration, averaging, time series properties, spurious
autocorrelation

JEL codes : C13, C22, C82, E43, G10
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1. Introduction and Summary

Most of the available monthly interest data series consist of monthly averages of daily
observations. One example is the extensive H.15 Statistical Data Release of the US Federal
Reserve Board of Governors, which contains interest rates for selected U.S. Treasury and
private money market and capital market instruments.1 A note to the release states
explicitly:

“Note: Weekly, monthly and annual figures are averages of business days
            unless otherwise noted.”

Also many of the monthly interest rate series contained in other databases are averages.2 In
no way, of course, we increminate the Federal Reserve for disseminating averaged data.
Averaging smoothes the series which is prefered, for example, when plotting the course of
the monthly rate levels over time. However, we warn against the easy use of these series
for more sophisticated purposes, such as gauging interest rate risk exposures. As shown by
Working [1960] the averaging of daily data within a week or a month introduces spurious
autocorrelation effects in the first differences of the series. It is the differenced interest rates
we are especially interested in and not in their levels since unexpected changes in interest
rates constitute interest rate risk. When estimating the interest rate risk exposure of equities
or the effective duration of a bond portfolio we relate changes in (log) equity or bond prices
to changes in interest rates.3 The predictable component of interest rate changes can be
removed by applying a time series model; the relationship between changes in market
prices and interest rate shocks can be investigated by univariate regressions.

This paper further explores the biases in the differenced series resulting from
averaging, both from a theoretical and an empirical point of view. Section 2 introduces
notation and summarizes Working’s [1960] result: within-month averaging potentially
removes almost 20% from the volatility of the differenced series. In addition we derive a
filter for removing the induced spurious autocorrelation component from a differenced
averaged series. Section 3 investigates the potential effect of averaging on the relationship
between interest rates and financial market variables such as equity or bond prices. In
contrast to interest rates the latter price series are readily available in ultimo month form.
We find that combining monthly returns on market variables with changes in averaged
interest rates will lead to serious biases in estimated correlations (R2s) and hence in
regression coefficients (interest rate elasticities) and their significance (t-statistics).
Although to a lesser extent this also applies when the induced autocorrelation effect has
been filtered from the corrupted interest rate series in an attempt to obtain unexpected
interest rate changes. Deriving explicit expressions for the biases we find that interest rate
elasticities may be underestimated with more than 20% and proportions explained
variance with almost 60%! Section 4 reports our empirical findings. We investigate a broad
selection of US interest rates and analyze their relationship with US equities (S&P 500
Index) over the period 1990 to 2000. The empirical results indicate that our theoretical
findings provide suitable approximations to the actual biases.

                                               
1 The release is published weekly at page http://www.federalreserve.gov/releases/H15/data.htm or
http://www.bog.frb.fed.us/releases/H15/data.htm. The Federal Reserve Bank of St. Louis
(http://www.stls.frb.org/fred/data/irates.html) also publishes the detailed US interest rate data.
2 For example the OECD Statistical Compendium, the Global Financial Database (at
http://www.globalfindata.com/tbusint.htm), and the Treasury Management Database (at
http://www.mcs.net/~tryhardz/tmp55.htm).
3 The possibility of non-stationary disturbances and nonsense regressions when levels are regressed
instead of differenced variables provides another argument for first differencing the series; see Granger
& Newbold [1974] and Plosser & Schwert [1978].
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2. Averaging and spurious autocorrelation

notation
Suppose we have a time series with T  monthly observations on the continuous
compounded interest rate r~  p.a.  Let Tt ,...,1=  denote the month index and d  the
number of trading days in each month (assumed fixed). The interest rate on day i  of
month t  is idtr +− )1(

~ . Hence month 1+t  contains the rates dtitdtd rrr )1(1
~,...,~,...,~

+++ . Using the

backward difference operator ∆  we define the difference between the rates on days td  and
1+td  by tdtdtd rrr ~~~

11 −≡∆ ++ . The rate on day i  of month 1+t  can be expressed as the sum
of the rate ultimo month t  and the following daily changes of the rate through day i :

(2.1) ∑
=

++ ∆+=
i

j
jtdtditd rrr

1

~~~

The difference between the rates on the last day (ultimo) of month 1+t  and the last day of
month t  is denoted by tddtdttd rrr ~~~

)1()1(, −≡∆ ++ . Hence the monthly difference between

ultimo interest rates is the sum of the differences between the daily rates:

(2.2) ∑
=

++ ∆=∆
d

i
itddttd rr

1
)1(,

~~

effects of averaging
We assume that the first differences of the daily interest rates are i.i.d. with constant
variance )~var( r∆ . Hence the variance of the monthly differenced rates, denoted by

)~var( tr∆ , is:

(2.3) )~var()~var( rdrt ∆=∆

where var(⋅) is the variance operator.
Now suppose that we first average the daily observations within each month and

then take the first differences between these averages. As Working [1960] has shown, this
averaging induces a spurious first order serial correlation effect in the differenced series.
The average rate in month 1+t , denoted by dttdr )1(, + , is:

(2.4) ∑∑∑
= =

+
=

++ ∆+==
d

i

i

j
jtdtd

d

i
itddttd r

d
rr

d
r

1 11
)1(,

~1~~1

where the last equality follows from eq.(2.1). The difference between the averaged rates,
denoted by dttdr )1(, +∆ , is:

(2.5)











∆−∆=−=∆ ∑ ∑∑∑

=

−

= =
−+

=
+−++

d

i

d

i

i

j
jtd

i

j
jtdtddtdttddttd rr

d
rrr

1

1

1 1
1

1
,)1()1(,)1(,

~~1

Using Working’s [1960] results, the variance of this differenced average is:
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(2.6) )~var(
3

12
)~var(

3
12

)var(
2

22

)1(, tdttd r
d

d
r

d

d
r ∆











 +
=∆

+
=∆ +

and the first order serial correlation of the differenced average, 1ρ , is:

(2.7)
)12(2

1
),(corr

2

2

,)1()1(,1
+

−
=∆∆≡ −+

d

d
rr tddtdttdρ

where corr(⋅,⋅) is the correlation operator. Higher order serial correlation coefficients
remain zero.

The primary focus is on monthly series. Assuming that there are on average 21=d
trading days in a month, the term between square brackets in eq.(2.6) approaches its limit
value of 32 . This means that within-month averaging reduces the volatility of the
differenced series with almost 20%. The reduction of volatility is summarized in Table 1
for various values of d . Between the two extremes (the lowest value 2=d  and the limit
value ∞→d ) we find the weekly ( 5=d ) and monthly ( 21=d ) averages. The decrease in
volatility from averaging may imply a substantial loss of information contained in the
original (ultimo) series. This issue is further investigated in section 3.

a correction for spurious autocorrelation
Since second and higher order serial correlation coefficients are zero we infer that the
differenced averaged series dttdr )1(, +∆  follows a MA(1)-process:

(2.8) tddtdttddttdr ,)1()1(,)1(,
~~

−++ +=∆ εαε

where dttd )1(,
~

+ε  is a zero mean, serially uncorrelated and constant variance disturbance

term and α  is the moving average parameter. Inverting the MA(1)-process into an AR(∞)-
process we have: 4

(2.9) [ ]...1
1

~ 22
)1(,

)1(,
)1(, −+−∆=

+

∆
= +

+
+ LLr

L

r
dttd

dttd
dttd αα

α
ε

where L is the lag operator. The variate dttd )1(,
~

+ε  now represents the monthly interest rate

change, corrected for the spurious first order serial correlation from the averaging:

(2.10) *
)1(,)1(,

~
dttddttd r ++ ∆=ε

In order to perform this correction we first determine the theoretical expected value of the
spurious first order serial correlation. For the monthly case 21=d  we have from eq. (2.7)

2492.01 =ρ . As the first order serial correlation for the MA(1)-process (2.8) is
12

1 )1( −+⋅= ααρ , this implies that 2670.0=α . Truncating eq. (2.9) after, say, four lags

we can compute the corrected series *
)1(, dttdr +∆  by:

                                               
4 The first order serial correlation for the MA(1)-process (2.8) is )1/( 2

1 ααρ += . As d  has a lower

bound of 2, it follows from (2.7) that 4/16/1 1 <≤ ρ . This in turn implies that

2679.01623.0 <≤− α . As 1<α , invertibility of the MA(1)-process is guaranteed.
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(2.11) +∆⋅+∆⋅−∆=∆ −−−++ dtdttddtdttddttd rrrr )1(,)2(,)1()1(,
*

)1(, 0713.02670.0

 dtdtdtdt rr )3(,)4()2(,)3( 0051.00190.0 −−−− ∆⋅+∆⋅−

Moving forward, a simple updating scheme is *
)1(,)2(,)1(

*
)2(,)1( dttddtdtdtdt rrr +++++ ∆−∆=∆ α .

After applying this filter, the actual first order serial correlation of *
)1(, dttdr +∆  is zero. It

directly follows from the MA(1)-process that the variance of the filtered averaged interest

rate *
)1(, dttdr +∆  is:

(2.12) )~var(
)1(3

12

1

)var(
)var(

22

2

2

)1(,*
)1(, t

dttd
dttd r

d

dr
r ∆

+

+
=

+

∆
=∆ +

+
αα

It also directly follows that the correlation between the filtered and unfiltered changes in
the averaged rate is:

(2.13) ( ) 2
1

2*
)1(,)1(, 1),(corr

−
++ +=∆∆ αdttddttd rr

So the volatility reduction of filtering a differenced averaged series is small compared to
the reduction in volatility that results from within-month averaging. Table 1 again
summarizes this effect for various values of d . As we will see in section 3, however, the
effect of filtering on cross correlations is substantial.

It is unlikely that interest rate changes exhibit constant variance and that the
interest rate follows a random walk. We therefore do not expect the results to hold exactly.
However, even when the interest rate process shows weak mean-reversion and
heteroskedasticity effects we hope that the MA(1)-process in (2.8) holds as a suitable
approximation and that the filter (2.11) will remove the spurious component from the
autocorrelation.

Table 1: Autocorrelation effects from averaging.

1ρ  is the first order spurious autocorrelation and α is the MA(1) parameter.
Standard deviation σ of differenced averages compared to differenced ultimos.
The table entries are the proportionality factors of indicated averaged case with
respect to ultimo case.

2=d 5=d 21=d ∞→d

1ρ 0.167 0.235 0.249 0.250

α 0.172 0.250 0.267 0.268

wrt )~( tr∆σ  :

)( tr∆σ 0.764 0.808 0.816 0.816

)( *
tr∆σ 0.753 0.784 0.788 0.788
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3. Averaging and the effect on cross correlations

Suppose we want to investigate the relationship between some factor y~  and the interest
rate r~ . y~  could for example be the logarithm of an equity index, a bond index, or an
exchange rate. Considering efficient market variables we may assume that y~  follows a
random walk:

(3.1) 11
~~~

++ ∆+= tdtdtd yyy

where the increments itdy +∆~  (the daily continuous compounded returns) are i.i.d. with

constant variance )~var( y∆ . Hence the variance of the monthly factor return, )~var( ty∆ , is:

(3.2) )~var()~var( ydyt ∆=∆

Using the same notation as before, the monthly factor return can be expressed as the sum
of the daily returns:

(3.3) ∑
=

++ ∆=∆
d

i
itddttd yy

1
)1(,

~~

effect on correlation
We denote the contemporaneous covariance between daily factor returns and interest rate
changes as )~,~cov( ry ∆∆ . We assume that cross correlations across time are absent. From
(2.2) and (3.3) it follows that the covariance between monthly differences, )~,~cov( tt yr ∆∆ ,
is:

(3.4) )~,~cov()~,~cov( rydry tt ∆∆⋅=∆∆

What will now be the effect of substituting the differenced average interest rates for
the differenced ultimo rates? From (2.5) and (3.3) we obtain:

(3.5) 












∆∆=∆∆ ∑∑∑

= =
+

=
+++

d

i

i

j
jtd

d

i
itddttddttd r

d
yry

1 11
)1(,)1(,

~1
,~cov),~cov(

( )∑
=

++ ∆−+∆=
d

i
itditd ridy

d 1

~)1(,~cov
1

( )∑
=

∆∆⋅=
d

i

ryi
d 1

~,~cov
1

( ) ( )tt ry
d

d
ryd ~,~cov

2
1~,~cov)1(2

1 ∆∆
+

=∆∆+=

where the first equality follows from the independent increments assumption and the last
equality from (3.4). Even for relatively small values of d  averaging the interest rate series
almost halves the covariance with the economic factor return. Since averaging also affects
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variance we determine the correlation between the factor return and the change in the
averaged interest rate:

(3.6) [ ] 2/1
)1(,)1(,

)1(,)1(,
)1(,)1(,

)var()~var(

),~cov(
),~(corr

dttddttd

dttddttd
dttddttd

ry

ry
ry

++

++
++

∆∆

∆∆
=∆∆

( )dttddttd ry
d

d )1(,)1(,22
1 ~,~corr

12

3
)1( ++ ∆∆













+
+=

For the lowest value d  can take, 2=d , the term between square brackets in eq.(3.6)

equals 0.866 and for ∞→d  this proportionality factor becomes 612.083 = . For 21=d

the term is very close to this limit value: 0.641. Since the square of this term equals 0.411,
about 60% of the factor variance explained by interest rate changes vanishes by averaging

the interest rate! These effects on 2R  are summarized in Table 2.
From (2.8) it follows that the covariance between the monthly factor return and the

change in the averaged interest rate does not change when the filter (2.11) is applied. The
correlation between the monthly factor return and the filtered averaged interest rate then
becomes:

(3.7) ),~(corr1),~(corr )1(,)1(,
2*

)1(,)1(, dttddttddttddttd ryry ++++ ∆∆+=∆∆ α

( )dttddttd ry
d

d )1(,)1(,2

2

2
1 ~,~corr

12

)1(3
)1( ++ ∆∆













+
+

+=
α

Filtering raises the proportion explained variance with a factor 2α . For 2=d , we have
611 =ρ  and 1716.0=α , so the term between square brackets in (3.7) equals 0.879. For

∞→d  the proportionality factor becomes 0.634. For 21=d  the term is again very close to

this limit value: 0.663. Since the square of this term equals 0.440, about %72 =α  more
factor variance can be explained by filtering monthly averaged interest rate changes; see
Table 2.

Table 2: Cross-correlation effects from averaging.
α is the MA(1) parameter of the differenced average series. Determination

coefficients 2R  and regression coefficients b of differenced averages compared to
differenced ultimos. The table entries are the proportionality factors of indicated
averaged case with respect to ultimo case.

2=d 5=d 21=d ∞→d
α 0.172 0.250 0.267 0.268

wrt )~,~(2
tt ryR ∆∆  :

),~(2
tt ryR ∆∆ 0.750 0.529 0.411 0.375

),~( *2
tt ryR ∆∆ 0.772 0.562 0.440 0.402

wrt )~,~( tt ryb ∆∆  :

),~( tt ryb ∆∆ 1 0.882 0.785 0.750

),~( *
tt ryb ∆∆ 1.030 0.937 0.841 0.804
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The case considered above in which the interest rate is averaged but the market factor not
is in our opinion most prevailing. For the sake of completeness, however, we investigate
the effect of averaging both series. Defining the monthly first difference of the market
factor ty~  analogous to eq.(2.5) we have:

(3.8) 

















∆−∆=∆∆ ∑ ∑∑∑

=

−

= =
−+

=
+++ ,~~cov

1
),cov(

1

1

1 1
1

1
2)1(,)1(,

d

i

d

i

i

j
jtd

i

j
jtddttddttd yy

d
ry
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−

= =
−+

=
+

d

i

d

i

i

j
jtd

i

j
jtd rr

1

1

1 1
1

1

~~

          )~,~cov()()1(
1 1

1

2

1

2
2

ryidid
d

d

i

d

i

∆∆











−+−+= ∑∑

−

==

          )~,~cov(
3

12
)~,~cov(

3
12

2

22

tt ry
d

d
ry

d

d
∆∆

+
=∆∆

+
=

where first step follows from the independence of the increments over time and the last
equality follows from (3.4). Since the variances change in the same proportion as the
covariance, the correlation between the differenced averaged series is identical to the
correlation between the differenced ultimo series:

(3.9) )~,~(corr),(corr )1(,)1(, ttdttddttd ryry ∆∆=∆∆ ++

effect on regression coefficients
Suppose we investigate the relationship between the factor and the interest rate by
univariate regression. Such a regression can be used to measure the interest rate risk
exposure of equities or to estimate the effective duration of a bond portfolio. This is an
important issue in the context of interest rate risk.5 Since we already have determined the
variances of the various differenced series and their correlations, the regression slopes from
regressing the factor return on the change in (ultimo, averaged and corrected) interest rates
readily follow.6 Trivially, the regression coefficient is invariant under the length of the
differencing interval of the original data:

(3.10) )~,~(
)~var(

)~,~cov(
)~,~( tt ryb

r

ry
ryb ∆∆=

∆
∆∆

=∆∆

From (2.6) and (3.5) the slope for the changes in the averaged interest rate is:

(3.11) )~,~(
)12(2

)1(3
),~(

2)1(,)1(, ttdttddttd ryb
d

dd
ryb ∆∆













+

+
=∆∆ ++

                                               
5 See for example Leibowitz [1986] and Hallerbach [1994].
6 The regression equations include a constant term. Note that the regression slope b(y,x) from regressing
y on x and the slope b(x,y) from regressing x on y are related by R2= b(y,x)⋅b(x,y).
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For ∞→d  the proportionality factor between square brackets becomes ¾. For 21=d  the
term is very close to this limit value, 0.785, so using monthly averaged interest rates would
underestimate the actual slope by more than 20%!

Next we consider the slope on the filtered averaged series.7 From (2.12) and (3.7)
we find:

(3.12) ),~()1(),~( )1(,)1(,
2*

)1(,)1(, dttddttddttddttd rybryb ++++ ∆∆+=∆∆ α

)~,~(
)12(2

)1(3
)1(

2
2

tt ryb
d

dd
∆∆









+
+

+= α

For ∞→d  the proportionality factor between square brackets becomes 0.804. For 21=d
the term is again close to this limit value: 0.841. Filtering thus would reduce the downward
bias to just over 15%. Table 2 summarizes the effect of averaging on various parameters.

Finally, since averaging changes the variances and covariances of differences with

the same proportionality factor 22 3)12( dd +  we have:

(3.13) )~,~(),( )1(,)1(, ttdttddttd rybryb ∆∆=∆∆ ++

effect on significance levels
We consider univariate regressions of ty~  on interest rate variables using T observations.
The regression’s F-statistic with 1 and T-2 degrees of freedom equals the square of the t-
statistic with T-2 degrees of freedom. Hence we can use the simple relationship between

the t-statistic and the (unadjusted) determination coefficient 2R :

(3.14)
1

2
2 −

−
==

−R

T
Ft

Using the correlation coefficients derived above and given the total number of observations
T, the t-statistics of the various regressions can easily be determined. For the relevant

averaging periods and for a choice of 2R s, Table 3 gives the ratios of the t-statistics relative
to the case in which differenced ultimos are regressed on differenced ultimos. The longer
the averaging interval the greater the decrease in significance. Even for a moderate
averaging interval of one week the t-statistic drops substantially. Also the stronger the
relationship between differenced ultimos the larger the loss in significance by averaging.
Filtering the differenced average only marginally improves significance. Note from (3.9)
and (3.13) that averaging both factor and interest rate series does not affect slope,
correlation nor significance.

                                               
7 Since the corrected series is in fact a residual from an auxiliary estimated time series process, this could
induce biases in the estimated regression coefficient. However, as Pagan [1984] has shown, the OLS
estimators for the auxiliary generated residuals in the main regression are both consistent and efficient.
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Table 3: Averaging and the significance of the estimated relationship.
Significance of regression coefficients b (or of determination coefficients 2R ) of
estimated relationships between factor return ty~∆  and various interest rate

changes.  The table entries are the proportionality factors of the t  values of the
indicated averaged case with respect to ultimo case, for various levels of the

ultimo case 2R .
2=d 5=d 21=d ∞→d

tt ry ∆∆  and ~  :
R2 = 0.90 0.481 0.318 0.255 0.239

0.75 0.655 0.468 0.386 0.361
0.50 0.775 0.600 0.509 0.481
0.25 0.832 0.676 0.587 0.557
0.10 0.854 0.709 0.621 0.592
0.05 0.860 0.718 0.632 0.602

* and ~
tt ry ∆∆  :

R2 = 0.90 0.503 0.338 0.270 0.251
0.75 0.677 0.493 0.405 0.379
0.50 0.793 0.625 0.531 0.502
0.25 0.847 0.700 0.609 0.579
0.10 0.868 0.732 0.643 0.614
0.05 0.873 0.741 0.653 0.624

4. An application to US interest rates and equities: gauging equity
durations

In order to put our theoretical results in a practical perspective we investigate a selection of
US interest rates over the period January 2, 1990 through December 31, 2000. The
monthly interest rate series available from the Federal Reserve Board’s  H.15 Statistical Data
Release  consist of monthly averages of daily observations. We selected the complete
Treasury Constant Maturity Series which offers yield to maturities on the most actively
traded marketable Treasuries, interpolated for ten remaining maturities ranging from three
months up to 30 years. We used the available daily data series to construct the ultimo
month series.8 In order to study the cross-correlation effects we take the S&P 500 Total
Return Index as the other financial market variable. The ultimo month index series is
readily available; we used daily index data to construct the within-month averaged index
data series. Finally we have log-transformed all series so that the first differences represent
log returns.9

The derivations in section 2 and 3 assume that the daily series exhibit constant
variance and no autocorrelation. In practice we would expect some mean reversion effects

                                               
8 Data on the 20-year Constant Maturity Treasury are only available starting from October 1, 1993.
9 This is common practice. Repeating all estimations for the original data yielded comparable results.



Table 4: Actual cross- and autocorrelation effects of averaging.
Using 120 monthly observations over the period 1990:1 through 1999:12. Actual standard deviations σ (in %) of differenced ultimo month
interest rates, and regression coefficients b, determination coefficients R2 and t-statistics of regression of S&P500 returns on these interest rate
shocks. The entries in the “wrt” columns show the proportionality factors of the indicated differenced average case with respect to
differenced ultimo case. For the fractional t-statistics in the last two columns we used T=120 and the actual R2s (see eq.(3.14)).

3 month 0.193 0.940 0.895 -2.698 1.084 0.931 0.018 1.040 0.694 1.474 1.020 0.831
6 month 0.207 0.967 0.913 -3.686 0.942 0.905 0.039 0.830 0.682 2.178 0.908 0.820

1 year 0.239 0.940 0.867 -3.936 0.867 0.904 0.059 0.664 0.614 2.708 0.807 0.775
2 year 0.273 0.918 0.846 -3.569 0.858 0.924 0.063 0.621 0.611 2.814 0.778 0.772
3 year 0.282 0.899 0.827 -3.833 0.844 0.923 0.078 0.576 0.582 3.153 0.746 0.750
5 year 0.277 0.879 0.809 -4.131 0.832 0.911 0.087 0.535 0.544 3.346 0.716 0.722
7 year 0.263 0.863 0.801 -5.004 0.818 0.879 0.115 0.498 0.496 3.920 0.684 0.682

10 year 0.253 0.844 0.785 -5.533 0.847 0.911 0.130 0.510 0.511 4.201 0.690 0.690
20 year 0.218 0.871 0.825 -4.988 0.834 0.750 0.077 0.528 0.373 3.128 0.713 0.596
30 year 0.211 0.862 0.812 -7.121 0.817 0.868 0.150 0.496 0.497 4.572 0.675 0.675
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for the (short) interest rates and (autoregressive) heteroskedasticity for all daily series.10

Therefore our results will not hold exactly but hopefully they will provide a good
approximation.

Of the ultimo month series the 3- and 6-month rates reveal a weak mean reversion
at the 95% confidence level; this effect disappears after applying appropriate
heteroskedasticity and autocorrelation consistent standard errors (Newey & West [1987]).
For all other series the autocorrelation functions of the first differenced ultimos indicate
that the total change in the interest rate may be considered as unexpected.

As expected the differenced monthly averages show a strong first order
autocorrelation. After applying the filter eq.(2.11) no significant degree of autocorrelation
is left. Since we only want to correct for the serial correlation induced by averaging, we
used the theoretical value of 1ρ  to estimate the moving average parameter α.

Table 4 reports the results. The first column gives the standard deviation of the changes in
the ultimo month rates (in percentages). The second column shows the volatility of the
changes in the averaged rates, expressed as a fraction of the number in the first column.
The third column shows the standard deviation of the filtered rate changes, again
expressed as a proportion of the first column entry. We see that although the decrease in
volatility from the averaging is not as drastic as one would expect (the theoretical value in
column two is .82) the proportion volatility remaining after applying the filter is very close
to the predicted value of .78. The shorter maturity range shows the largest discrepancies
with the theoretical results. Given mean reversion and heteroskedasticity effects this comes
as no surprise. Note that 10 year rate complies in an exemplary fashion with the theoretical
results. This is important since given the liquidity of the market segment this rate is often
considered as the benchmark long interest rate.

Next we turn to cross-correlation effects. All slopes coefficients from regressing
equity returns on interest rate changes are significant at the 95% level, except for the 3-
month rate. Since we use log-changes the regression slope represents the interest rate
elasticity of the S&P 500 Index. For example, the slope of –5.5 for the 10-year rate
indicates that the equity duration for the 10-year rate is 5.5: we may expect a drop of 5.5%
of the S&P 500 Index when one plus the 10-year rate increases with 1%, ceteris paribus.
Notably for the longer rates the empirical results conform well to the theoretical findings.
Using the monthly averaged series would lead to a 15-20% underestimation of the equity
duration. Filtering the data in order to obtain interest rate shocks only marginally mitigates
this problem. The loss in explained variance when using monthly averages is not as high as
the nearly 60% predicted but still a staggering 50%! As a result also the drop in significance
is quite close to the 35-40% predicted (see the last two columns of Table 4).

Summarizing we conclude that the theoretical findings provide a good indication for the
observed empirical biases. Using available monthly averaged interest rate series seriously
distorts empirical estimates ranging from interest rate volatilities to equity durations and
their significance. We therefore advice a close inspection of the monthly data before use.

                                               
10 For short rates Chan et al. [1992] find only very weak evidence of mean reversion but a predominant
heteroskedasticity effect related to the interest rate level.
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