
TI 2000-40/2 
Tinbergen Institute Discussion Paper 

                      
Comprehensive Definitions of 
Breakdown-Points for  
Independent and Dependent 
Observations 

 Marc G. Genton 
André Lucas 

 

 

 
 
 
 



 
 

Tinbergen Institute 
The Tinbergen Institute is the institute for economic research of  the 
Erasmus Universiteit Rotterdam, Universiteit van Amsterdam and  
Vrije Universiteit Amsterdam.  
 
 
Tinbergen Institute Amsterdam 
Keizersgracht 482 
1017 EG Amsterdam 
The Netherlands 
Tel.: +31.(0)20.5513500 
Fax: +31.(0)20.5513555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31.(0)10.4088900 
Fax: +31.(0)10.4089031 
 
 
 
Most TI discussion papers can be downloaded at  
http://www.tinbergen.nl  

 



Comprehensive De�nitions of

Breakdown-Points for

Independent and Dependent Observations

Marc G. Genton and Andr�e Lucas�

May 3, 2000

Abstract

We provide a new de�nition of breakdown in �nite samples with

an extension to asymptotic breakdown. Previous de�nitions center

around de�ning a critical region for either the parameter or the ob-

jective function. If for a particular outlier constellation the critical

region is entered, breakdown is said to occur. In contrast to the tradi-

tional approach, we leave the de�nition of the critical region implicit.

Our de�nition encompasses all previous de�nitions of breakdown in

both linear and non-linear regression settings. In some cases, it leads

to a di�erent notion of breakdown than other procedures available.

An advantage is that our new de�nition also applies to models for

dependent observations (time-series, spatial statistics) where current

breakdown de�nitions typically fail. We illustrate our points using

examples from linear and non-linear regression as well as time-series

and spatial statistics.
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1 Introduction

The issue of qualitative robustness and especially the de�nition of breakdown

has made considerable progress over the last three decades. Hampel (1971)

de�ned breakdown as the fraction of contamination (or outliers) that su�ces

to drive the estimator beyond all bounds. Since the original introduction

of the concepts of breakdown and the breakdown-point by Hampel (1971),

the breakdown-point has been extended to �nite samples (Donoho and Hu-

ber, 1983), bounded parameter spaces, dependent observations (Martin and

De Jong, 1977; Martin, 1980), test statistics (He et al., 1990; He, 1991),

and non-linear regression models (Stromberg and Ruppert, 1992; Sakata and

White, 1995, 1998). Especially Stromberg and Ruppert (1992) and Sakata

and White (1995) convincingly argue that the bias in the parameter esti-

mates is not always a good criterion to assess breakdown of an estimator.
Instead, Stromberg and Ruppert propose to consider the fraction of con-

tamination that drives at least one of the �tted values to its supremum or
in�mum. Sakata and White argue that the �tted value may sometimes not

be a satisfactory criterion either, and therefore propose several alternative
criterion functions to assess breakdown.

Though these alternative de�nitions cover a wide range of models and

estimators, one can easily construct examples that are not covered by the
available de�nitions. A very simple example is given by the autoregressive

time-series model of order 1,

Yi = �Yi�1 + ei; (1)

with � 2 (�1; 1) and ei an i.i.d. innovation. Suppose Yi is observed with error
as ~Yi = Yi+Zi, where Zi = � when i = i0 for a single i0 2 f1; : : : ; n�1g, and
Zi = 0 otherwise. Then the OLS estimator of � based on the contaminated

sample ~Y1; : : : ; ~Yn, is given by

�̂ =

Pn

i=2
~Yi ~Yi�1Pn

i=2
~Y 2
i�1

=
� � (Yi0�1 + Yi0+1) +

Pn

i=2 YiYi�1

�2 + 2�Yi0 +
Pn

i=2 Y
2
i�1

: (2)

Clearly, as � ! 1, �̂ ! 0. So the OLS estimator in this simple time-series

model breaks with one outlier to zero, which is at the center of the parameter

space. This form of breakdown typically rules out the classical de�nition of

Hampel, because the estimator does not diverge. Moreover, it also violates

the straightforward extension of Hampel's de�nition to compact parameter

spaces. In that de�nition, breakdown occurs if the estimator is pushed to the

edge of the parameter space. Here, however, the estimator does not go to the

edge, but rather to the center of the parameter space. Also note that this
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simple example does not �t the more recent de�nitions of breakdown either.

In particular, following the de�nition of He and Simpson (1992, 1993), break-

down occurs if the supremum bias is reached. This, however, need not be the

case if � is negative or positive, in which case the sup bias is reached upon

breakdown to plus one or minus one instead of zero, respectively. Alterna-

tively, Stromberg and Ruppert and also Sakata and White de�ne breakdown

as the point where the model's �t (�̂Yi�1) or some other criterion function

tends to either its supremum or its in�mum for some observation in the sam-

ple. Clearly, this would again induce breakdown to either plus or minus one

given the restricted parameter space, and not breakdown to zero.

Given the drawbacks of the previous de�nitions available, we introduce

a new concept of breakdown. All previous de�nitions make explicit use of

a criterion function combined with a critical region. For example, Hampel's

original de�nition uses the absolute bias as the criterion function and in�n-
ity as the critical region. If the criterion function enters the critical region

for a certain fraction of outliers/contamination, breakdown is said to have
occurred. Following Sakata and White (1995), we consider a speci�c model
badness measure as our criterion function. This encompasses the de�nitions

of Hampel (badness is bias) as well as Stromberg and Ruppert (badness is
model �t). In contrast to previous work, however, we leave the de�nition of
the critical region implicit. In particular, we look for the fraction of contam-

ination such that the set of possible badness values under extreme outlier
con�gurations does not expand any more if additional outliers are added. In

this way, we are able to accomodate most of the earlier de�nitions of break-
down. In addition, we also cover situations of breakdown that are not covered
by the earlier de�nitions. We illustrate the main issues with examples from

linear and non-linear regression as well as time-series and spatial statistics.
In some cases, our de�nition of breakdown gives a di�erent breakdown

point than available de�nitions. We provide a typical example in the non-
linear regression context, confronting our breakdown point with that of Stromberg

and Ruppert. The new notion of breakdown checks whether the non-contaminated

sample information still has some inuence on the estimator. If this is no

longer the case, the estimator is said to have broken down. This may happen
even in case the model's �t over a pre-speci�ed domain of interest remains

bounded.

The remainder of the paper is set up as follows. In Section 2 we in-

troduce the basic notation and our new de�nition of breakdown for �nite

samples. The de�nition is related to alternative ones in Section 3. Some il-
lustrative examples are given in Section 4. Section 5 extends the de�nition of

the breakdown-point to the asymptotic case and provides some illustrations.

Section 6 concludes.
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2 De�nition of Breakdown

We consider a sample of size n,

�Yn = (Y1; : : : ; Yn): (3)

The sample may consist of i.i.d. observations as well as dependent obser-

vations, e.g., a time-series. The estimator of the K-dimensional parameter

vector � is de�ned as a function of the sample, i.e.,

�̂ = �̂( �Yn): (4)

We introduce outliers through a contaminating sample �Z�
n;m. Here n denotes

the sample size again,m represents the number of outliers in the contaminat-

ing sample, and � indicates the magnitude of the outliers. For example, in the
context of estimating the location of an i.i.d. sample, �Z�

n;m typically contains

(n�m) zeros and m non-zeros. Using the concept of a contaminating sam-
ple rather than individual outliers allows us to consider outlier patterns that

exhibit more structure than in the regression setting. For example, in a time-
series setting we distinguish between additive outliers (AOs) or replacement
outliers (ROs), and innovation outliers (IOs). The former can be considered

as pure measurement errors, whereas the latter are exceptional shocks that
satisfy the feed-through mechanism of the time-series process. Consider a
simple autoregression as in (1). An additive or replacement outlier can then

be studied by specifying

�Z�
n;1 = (0; : : : ; 0; �; 0; : : : ; 0)

for some � 2 R, while an innovation outlier corresponds to

�Z�0
n;1 = (0; : : : ; 0; �; ��; �2�; : : :):

Similarly, in the context of spatial statistics, consider a simple simultaneous

autoregressive model of order 1,

Yi = �(Yi�1 + Yi+1) + ei:

Again, an additive or replacement outlier can be studied by specifying

�Z�
n;1 = (0; : : : ; 0; �; 0; : : : ; 0)

for some � 2 R, while an innovation outlier corresponds to

�Z�0
n;1 = (: : : ; �2�; ��; �; ��; �2�; : : :):
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We de�ne Z�
n;m as the set of allowable outlier constellations. For example,

the set of allowable IOs typically includes �Z�0
n;1, but not

�Z�
n;1 as de�ned above.

As mentioned in the introduction, de�ning breakdown in terms of bias

in the estimator is not always satisfactory. Especially if the model is non-

linear, criteria other than parameter stability may be more relevant. See

also the arguments raised in Stromberg and Ruppert (1992) and Sakata and

White (1995). Following Sakata and White (1995), therefore, we introduce

a badness measure

Rn(�; �Yn) 2 R
+ : (5)

Sakata and White de�ne breakdown as the fraction of contamination that

drives the badness measure to its supremum. As the badness measure may

coincide with the bias, this encompasses the Donoho-Huber de�nition of

breakdown. The main disadvantage of Sakata and White's de�nition is that

estimators may already have been broken before the badness measure reaches
its supremum. A nice example was given in the introduction for the OLS es-
timator of the AR(1) parameter, where badness is taken as bias. The failure

of the Sakata and White de�nition is due to the fact that the breakdown re-
gion is made explicit, in particular, the supremum badness. In our de�nition,

we leave the breakdown region implicit. First, we introduce the boundary
set of possible badness outcomes for contaminated samples,

�Rn( �Yn;Z
�
n;m) = @

0
@ [

�Z
�

n;m2Z
�

n;m

Rn(�̂( �Yn + �Z�
n;m);

�Yn)

1
A ; (6)

where @(A) is the boundary of the set A. We allow for �Rn(�) to contain
�1. Second, we introduce the perturbed uncontaminated sample �Y �

n , with
maxi jY

�
i �Yij < �. The perturbed sample is needed in case there are duplicate

observations in the sample. We now introduce the following de�nition of
breakdown.

De�nition 1 The breakdown-point of the estimator �̂ of � is given by

" � lim
�!0

min

�
m� 1

n

���� lim
�!1

�Rn( �Y
�
n ;Z

�
n;m)

\

lim
�!1

�Rn( �Y
�
n ;Z

�
n;m+1) 6= ; 8 �Y �

n

�
:

The de�nition looks for the smallest fraction of extreme outliers for which

the boundary of the set of possible badness values does not expand any more
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in all directions if an additional outlier is added to the sample. Consider

for example the mean as an estimator of location. By adding either one

or two extreme outliers, one can drive the estimator to +1. This implies

that the boundary set contains +1 for both m = 1 and m = 2. Therefore,

following the de�nition, the breakdown point of the mean is 0. It is important

to note that the de�nition is implemented for extreme outliers. We are

not concerned here with the possibly huge biases in the estimator for less

extreme outliers. Note, however, that � ! 1 need not imply that the

outliers tend to (plus or minus) in�nity. For example, in the context of

scale estimation it can be worthwhile to consider outliers for which the non-

zero elements of �Z�
n;m are either � or ��1 � Yi. These alternative types of

outliers can be used to check for explosion or implosion of the scale estimator,

respectively. The restriction to extreme outliers rather than arbitrary outlier

con�gurations makes our de�nition easier to apply. Moreover, it still includes
most situations of practical interest.

It is good to note here that the boundary set of possible badness outcomes
naturally contains its supremum, that is the supremum over extreme outlier
con�gurations. Using our de�nition of breakdown, this means that if the

sup-badness curve is at, the estimator is broken. Note that the sup-badness
curve may increase further when even more outliers are added, meaning
that the estimator may not have been broken in the sense of Stromberg

and Ruppert or Sakata and White. A nice example in the time-series setting
is provided in Section 5.

The sample perturbation �Y �
n , as mentioned earlier, is needed if there are

duplicate entries in the sample. Consider for example the median of the
sample

1; 3; 3; 3; 3; 3; 7:

Consider the case where badness is the value of the estimator. The median

of this sample is 3. If one or two of the observations are changed, the median
remains 3, and therefore the boundary set of possible badness values does

not expand. Clearly, however, the estimator has not been broken. If the

sample is slightly perturbed, e.g., by adding i � 10�6 to the ith observation,

the median changes if either one or two observations are altered. Therefore,
the boundary set expands from f3 + 4 � 10�6g to f3 + 2 � 10�6; 3 + 6 � 10�6g

for the perturbed sample and the estimator has not been broken.
It is worthwhile to mention several possible modi�cations and/or exten-

sions to our de�nition. First, in some cases it is informative to look for

the point where the boundary set does not expand for the next k (extreme)
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outliers instead of the next outlier only,

"k � lim
�!0

min

�
m� 1

n

���� lim�!1

�Rn( �Y
�
n ;Z

�
n;m)

\

lim
�!1

�Rn( �Y
�
n ;Z

�

n;m+`) 6= ; 8 �Y �
n ; for ` = 1; : : : ; k

�
:

In particular, by letting k tend to n, we look for the fraction of outliers that

makes the boundary set constant in at least one direction. A second point

concerns the use of the uncontaminated ( �Yn) or the contaminated ( �Yn+ �Z�
n;m)

sample as the second argument in the badness function Rn(�̂; �) in (6). In our

de�nition, we follow Sakata and White (1995) and use the uncontaminated

sample. In some cases, however, it can also be useful to insert the contam-

inated sample into the badness function, see for example Genton (1998b),

and Ma and Genton (2000). A third possible extension concerns the direc-
tion of breakdown. So far, we concentrate on there being some direction in

which the boundary badness set does not expand. In certain cases, however,
it might be interesting to obtain more information on the direction in which
the estimator is most likely to break down. For example, in the scale es-

timation problem discussed earlier, we might distinguish between implosion
and explosion of the scale estimator, depending on whether the lower or the
upper endpoint of the boundary set remains �xed.

In the next section, we discuss the relation between our de�nition and the
de�nitions available in the literature. In Section 4 we give some illustrative

examples, further highlighting the di�erence of our de�nition with alternative
de�nitions of breakdown.

3 Relation to Available De�nitions

Consider the i.i.d. regression model

Yi = Xi� + ei; (7)

with �Yn = ((Y1; X1); : : : ; (Yn; Xn)). Any reasonable estimator for � will

change with the value of �Yn. Therefore, if we take the badness function

to be the bias, the only way to get a constant boundary set is to let the

estimator diverge to plus or minus in�nity. This reproduces the standard

de�nition of breakdown by Donoho and Huber. In other cases, for example

dependent observations, the Donoho-Huber breakdown point will provide an

upper bound for the breakdown point from our de�nition, given that the

badness function is the (absolute) bias.
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Stromberg and Ruppert (1992) de�ne breakdown in terms of model �t.

If we take model �t as our badness measure, we again obtain that the

Stromberg-Ruppert breakdown point provides an upper bound for our new

de�nition of the breakdown point. That the upper bound may be strict

is illustrated in the next section using the non-linear Michaelis-Menten re-

gression model. In our de�nition, an estimator has broken if the remaining

uncontaminated observations have no e�ect on the estimator any more. This

may happen even if the model's �t is still below its supremum or above its

in�mum. In our view, it is more natural to say that the estimator has been

broken if its value is totally dictated by the outliers in the sample, while

the uncontaminated observations do not have an e�ect. As the de�nition

of Sakata and White (1995) is very similar to that of Stromberg and Rup-

pert, similar comments apply to it. Also note that both de�nitions fail to

accommodate breakdown in the simple autoregressive model (1).
Martin and De Jong (1977) and Martin (1980) de�ne breakdown for the

autoregressive time-series setting. In particular, they consider breakdown
towards zero and to plus or minus one as the relevant notions of breakdown.
Though we completely agree with their analysis, their approach is rather fo-

cussed on the time-series setting and only discusses asymptotic robustness.
Our de�nition, by contrast, quite naturally accommodates both the regres-
sion setting and the time-series setting, see the examples in the next sections.

Moreover, we also provide a de�nition of breakdown that can be used in �nite
samples.

Other previous de�nitions of breakdown points for dependent observa-
tions have been studied by Genton (1998b) for spatial statistics and Ma and
Genton (2000) in the context of time series. Both approaches are extending

the traditional breakdown point to a spatial and temporal one for variogram
and autocovariance estimators respectively. The reason is that these estima-

tors are based on di�erences between observations apart by a (lag) vector h
and usually have a known breakdown-point with respect to these di�erences.

However, practitioners are interested in the breakdown point with respect

to the initial observations that are located in space or time. Therefore, one

has to study the most unfavorable con�guration of contamination that will
ensure as many contaminated di�erences as possible. Consider the case of

time series or of a unidimensional spatial domain. For a �xed lag h, the set

of allowable outlier constellations can be studied by specifying

�Z�;h
n;m = (0; 0; 0; �1; �2; �3; 0; 0; 0; �4; �5; �6; 0; 0;

0; : : : ; �m; 0; : : : ; 0);

i.e. constellations starting with h uncontaminated locations (here h = 3),

followed by h contaminated ones, and so on until exhaustion of them outliers.
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Consider Matheron's classical variogram estimator ̂M(h; �Yn) =
Pn�h

i=1 (Yi+h�

Yi)
2 (or equivalently the sample autocovariance function). Put the non-zero

elements of Z
�;h
n;1 and Z

�;h
n;2 equal to 1, then it is easy to see that

1 = ̂M(h; �Yn + �Z�;h
n;1) = ̂M(h; �Yn + �Z�;h

n;2): (8)

Consequently, the breakdown-point is zero. Now consider a highly robust

variogram estimator ̂HR(h; �Yn) = S2(Yi+h�Yi), (e.g. Genton, 1998a), where

S2 is a highly robust estimator or the variance of the process Yi+h � Yi.

Typically, S2 has breakdown-point b(n�h)=2�1c=(n�h), where b�c denotes

the integer part. Put the non-zero elements of Z�;h
n;m and Z

�;h
n;m+1 equal to 1,

then we have to �nd the smallest value of m such that

1 = ̂HR(h; �Yn + �Z�;h
n;m) = ̂HR(h; �Yn + �Z�;h

n;m+1): (9)

This has been shown to depend on the relation between n, m, and h, and

the solution is plotted in Genton (1998b, Figure 4). Note that unlike the
AR(1) case, breakdown to in�nity is the only relevant breakdown region
here. Similar conclusions are valid for the sample autocovariance function,

see Ma and Genton (2000).
Finally, it is worth mentioning the paper by Boente et al. (1987) on quali-

tative robustness for dependent observations. They consider the continuity of

estimators under outlier contamination in an asymptotic context. In particu-
lar, discontinuity of the estimator is regarded as a signal of the estimator not

being qualitatively robust. The concept of continuity is, however, di�cult to
implement in �nite samples.

4 Some Illustrative Examples

Consider the location estimation problem

Yi = �+ ei; (10)

with the ei being i.i.d. The classical de�nition of breakdown requires that

the estimator of �, �̂ say, be pushed towards �1. For example, if �̂ is the

mean, it is well known that one outlier su�ces to achieve the divergence of
�̂. For the median, the classical breakdown point equals b(n � 1)=2c=n. As

the �tted value of Yi equals �̂, the de�nition of Stromberg and Ruppert gives

identical results. To implement our de�nition, introduce the set of allowable

outlier constellations such that every �Z�
n;m 2 Z�

n;m has n �m zeros, and m

9



non-zero elements. Put the non-zero elements of �Z�
n;1 and

�Z�
n;2 equal to 1,

then it is easy to see for the mean that

1 = �̂( �Yn + �Z�
n;1) = �̂( �Yn + �Z�

n;2) (11)

Consequently, we obtain the same breakdown-point as Donoho-Huber or

Stromberg-Ruppert. For the median, we set the non-zero elements of �Z�
n;m

for m = b(n + 1)=2c and m = b(n + 1)=2c + 1 to 1 and obtain a similar

result.

As a second example, consider the AR(1) model introduced earlier with

one additive outlier. De�ne �Y �
n and �Y +

n as containing the �rst and last n� 1

elements of �Yn, respectively. For OLS, we obtain

�̂ =
(�Y +

n + �Z�;+
n;m)

0( �Y �
n + �Z�;�

n;m)

( �Y �
n + �Z�;�

n;m)0( �Y �
n + �Z�;�

n;m)
:

Set the non-zero elements of �Z�
n;1 and �Z�

n;2 equal to �. Analogous to the
expression in the introduction, it is easy to show that the denominator is

quadratic in �, whereas the numerator is (at most) linear in �. Letting � tend
to 1, we obtain �̂ ! 0 for both m = 1 and m = 2, indicating breakdown.

Note, however, that the supremum bias is not reached. The supremum bias
is obtained either by taking �Z�

n;n = (�; : : : ; �) or �Z�
n;n = (�;��; �;��; : : :) and

letting � tend to in�nity.

Our third example concerns the non-linear regression setting. It illus-
trates further crucial di�erences between our de�nition and the breakdown

de�nition of Stromberg and Ruppert. We consider the Michaelis-Menten
model

Yi =
V Xi

K +Xi

+ ei =
�KXi

K +Xi

+ ei;

where � = V=K, V;K > 0, and Xi > 0. For simplicity, we assume that our
region of interest for X is X 2 [0; 3]. It is easy to see that the functional

form of the Michaelis-Menten model is non-decreasing. The main point of

Stromberg and Ruppert (1992) to discuss this model is that if outliers are

such that the estimator for K diverges while that for � remains constant,

the estimator is broken in the Donoho-Huber sense. The model's �t (over

the range mentioned), however, is still bounded and tends to �̂X. This

leads Stromberg and Ruppert to their alternative de�nition of breakdown.

We restrict attention to their type of outliers and show that the Stromberg-

Ruppert and our de�nition of breakdown do not always coincide. We consider

outliers of the form Z
�
i;m = (��; �) for the non-zero elements in �Z�

n;m, where �

is a �xed bounded constant and Z�
i;m is the ith element of �Z�

n;m. So the outliers
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lie on a speci�c ray from the origin. We consider the least-squares estimator

and let � tend to in�nity. Clearly, if there is one extreme outlier only, the

least-squares regression curve must pass through this outlier, implying

Yj + �� =
�̂K̂ � (Xj + �)

K̂ +Xj + �
,

�̂ =
(Yj + ��)(K̂ +Xj + �)

(Xj + �) � K̂
; (12)

for the outlier pair (Yj; Xj). Using this, the least-squares objective function

becomes

min
K̂

X
i6=j

"
Yi �

(Yj + ��)(K̂ +Xj + �)K̂Xi

(Xj + �) � K̂ � (K̂ +Xi)

#2
: (13)

As the numerator of the second term within brackets is of order �2, whereas

the denominator is of order �, it is clear that the optimal K̂ satis�es K̂ =
���+op(�

�) for some � > 0 and � � 1 when � !1. If � > 1, �̂ = �+O(��1).

Similar derivations can be followed if there are two outliers, i.e., Z�
i;m =

(��1; �1) for i = j1, and Z
�
i;m = (��2; �2) for i = j2. By letting �1; �2 !1 and

�1=�2 ! c with 1 > c � 0, one easily derives that the Michaelis-Menten curve
collapses to a straight line through the origin with slope coe�cient �, i.e.,

�̂ = � and K̂=max(�1; �2) ! 0. This also holds if there are more than two
outliers of the type above. Note that in all these cases the �t at any X 2 [0; 3]
is bounded, such that the least-squares estimator has not broken in the sense
of Stromberg and Ruppert. To answer the question whether the estimator
has broken in the sense of our new de�nition of breakdown, we also have to
consider the situation �1 = �2. We assume that Z�

i;m = (��; �) for m distinct

entries of �Z�
n;m, and zero otherwise. Assuming the last m observations are

contaminated, the least-squares objective function becomes

min
�;Y �;X�

(
n�mX
i=1

�
Yi �

Xi(Y
� + ��)(X� + (1 + �)�)

(X� + �)(Xi + ��)

�2
+ (14)

nX
i=n�m+1

�
Yi + �� �

(Xi + �)(Y � + ��)(X� + (1 + �)�)

(X� + �)(Xi + (1 + �)�)

�2)
=

min
�;Y �;X�

(
n�mX
i=1

�
Yi �

�(1 + �)Xi

�
+O(��1)

�2
+ (15)

nX
i=n�m+1

�
Yi � Y

�
�

��(Xi �X�)

1 + �
+O(��1)

�2)
;

11



where we made use of (12) with Yj = Y � and Xj = X�, and K̂ = ��. From

(15) we have

Y � � ��X�=(1 + �) = m�1

nX
i=n�m+1

(Yi � ��Xi=(1 + �));

such that (15) simpli�es to

min
��1

n�mX
i=1

h
Yi � � ~Xi

i2
+ (16)

nX
i=n�m+1

"
(Yi �Mm

Y )�
~Xi �Mm

X

�

#2
+O(��2);

with � = (1+�)=�, ~Xi = �Xi,M
m
Y =

Pn

i=n�m+1
Yi=m, andMm

X =
Pn

i=n�m+1
~Xi=m.

The restriction � � 1 follows from � � 0. An example of how (16) works
is given in Figure 1. For a simulated data set, we contaminate the 3 obser-
vations most to the right by moving them in parallel to the ray �X. Using

(16), we are looking for a � (or ��) such that the squared vertical discrep-
ancies between the observations and the pictured line segments are minimal.
Note that the contaminated observations (solid) are taken in deviation of

the right-hand line segment, whereas the uncontaminated (open) observa-
tions are taken in deviation of the left-hand line segment. If � � 1 is binding

both line segments have the same slope, though di�erent intercepts. The �t
over the range X 2 [0; 3] is then given by �X, which does not vary by adding
additional outliers. This will be the case if for example � � maxi Yi=Xi. If �

is smaller, the constraint � � 1 may not be binding and the �t �̂X still varies
because �̂ still depends on the sample through (16). So with m outliers, the

boundary badness set for extreme outliers and given X 2 [0; 3] is given by
either f�X; �̂mXg or f�Xg, where �̂m can still vary for increasing m. It is
clear, however, that the intersection of these sets for m = 1 and m = 2 is

non-empty. Therefore, the breakdown-point of the least-squares estimator is

0. The model �t, however, is still �nite in all cases considered. Therefore,
the estimator may have broken down in the sense of Section 2 without having

been broken in the sense of Stromberg and Ruppert.
Note that the use of the boundary set of possible badness outcomes also

provides additional information. In particular, there are two types of outlier

con�gurations of interest. If outliers lie increasingly far apart, the model's
�t is dictated completely by the outliers (�X). The uncontaminated ob-

servations have no inuence on the estimator any more. This leads to our

notion of the estimator having broken down, even if the model's �t is below

12
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Figure 1: LS �t of the Michaelis-Menten model with three outliers

its supremum. If however, � > 0 is su�ciently small and the outliers occur
in one cluster, the model's �t still bears some relation to the true �t as �̂m
still depends on the uncontaminated sample observations. So the estimator

has not broken down according to our de�nition if only outliers in clusters
(�i � �) are considered.

5 Asymptotic Breakdown-Point

To extend our de�nition to the asymptotic case, we introduce the stochastic

processes �Y = fYig
1
i=1 and �Z�

� = fZ
�
i g
1
i=1. The interpretation is similar to

that in Section 2. The subscript � for the contaminating process indicates the

fraction or probability of contamination. For example, for regression outliers
�Z�
� typically is an i.i.d. process with P (Z�

i = �) = 1� P (Z�
i = 0) = � for all

n. The badness measure is now a functional,

R(�; �Y + �Z�
�): (17)

We also examine the boundary badness set

�R( �Y ;Z�
�) = @

0
@ [

�Z
�

�2Z
�

�

R(�̂( �Y + �Z�
�);

�Y )

1
A ; (18)

where �Z�
� contains the allowable contaminating processes corresponding to a

contaminating probability �.

De�nition 2 The breakdown-point "(�̂; �Y ; �Z�
�) of the estimator �̂ at the (un-

contaminated) process �Y for the set of allowable outlier con�gurations �Z�
�, is

13



given by

"(�̂; �Y ; �Z�
�) = inf

�
�

���� 9�� > 0 : lim
�!1

�R( �Y ;Z�
�)
\

lim
�!1

�R( �Y ;Z�

�+�) 6= ; 8 0 < � < ��

�
:

If the probability measure of �Y has atoms, the condition inside the de�ni-

tion of the breakdown-point should hold for all slightly perturbed processes
�Y , where the extent of perturbation tends to zero. The present de�nition

requires the boundary of the set of possible badness values to be at in at

least one direction over a non-degenerate region [�; � + ��].

To illustrate the de�nition, consider the mean as a location estimator in

the i.i.d. setting,

�̂( �Y ) =

Z
YiP (dYi): (19)

As a badness measure, consider the bias j�̂ � �j. This should give us the
Donoho-Huber breakdown-point of the mean. For the i.i.d. contaminating

process P (Z�
i = �) = 1� P (Z�

i = 0) = � with � " 1, it is easy to show that
for every positive � arbitrarily close to 0, both +1 and �1 are contained in
the boundary badness set. Consequently, the breakdown-point of the mean

is zero. A similar line of argument can be used to show that the median has
a breakdown-point of 1/2.

We conclude with a more involved example: the LMS estimator for time-

series models, see Rousseeuw and Leroy (1987), and Lucas (1997). Consider
the AR(1) model

Yi = �Yi�1 + ei; (20)

where the innovations ei form an i.i.d. process. We assume that ei is sym-
metrically distributed around 0 and that badness is measured by bias.

Consider the two i.i.d. additive outlier processes

1. P (Z�
i = �) = 1� P (Z�

i = 0) = �;

2. P (Z�
i = �) = P (Z�

i = �) = (1� P (Z�
i = 0))=2 = �=2;

where  2 [�1; 1] is a �xed constant. The LMS estimator �̂LMS of �minimizes

median
�
ei + Z

�
i � �̂LMSZ

�
i�1 + (�� �̂LMS)Yi�1

�2
; (21)
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which means that it solves

0:5 = (1� �)2P ([ei + (�� �̂LMS)Yi�1]
2 < c) + (22)

�(1� �)P ([ei + (�� �̂LMS)Yi�1 + �]2 < c) +

�(1� �)P ([ei + (�� �̂LMS)Yi�1 � �̂LMS�]
2 < c) +

�2P ([ei + (�� �̂LMS)Yi�1 + (1� �̂LMS)�]
2 < c)

with respect to c for contaminating process 1, and

0:5 = (1� �)2P ([ei + (�� �̂LMS)Yi�1]
2
< c) +

�(1 � �)P ([ei + (�� �̂LMS)Yi�1 + �]2 < c)=2 +

�(1 � �)P ([ei + (�� �̂LMS)Yi�1 + �]2 < c)=2 +

�(1 � �)P ([ei + (�� �̂LMS)Yi�1 � �̂LMS�]
2
< c)=2 +

�(1 � �)P ([ei + (�� �̂LMS)Yi�1 � �̂LMS�]
2
< c)=2 +

�
2
P ([ei + (�� �̂LMS)Yi�1 + (1� �̂LMS)�]

2
< c)=4

�
2
P ([ei + (�� �̂LMS)Yi�1 + ( � �̂LMS)�]

2
< c)=4

�
2
P ([ei + (�� �̂LMS)Yi�1 + (1� �̂LMS)�]

2
< c)=4

�
2
P ([ei + (�� �̂LMS)Yi�1 + (1� �̂LMS)�]

2
< c)=4

for process 2. If we let � !1, we see that there are only 3 and 4 interesting
values of �̂LMS for contaminating processes 1 and 2, respectively. For process
1, we only consider 0, �, and 1, while for process 2 we also consider �̂LMS = .

We can now rewrite (22) as

c =

8><
>:

P�1
(e+�Y )2

(0:5(1� �)�1) for �̂LMS = 0;

P�1
e2
(0:5(1� �)�2) for �̂LMS = �;

P�1
(e+(��1)Y )2

(0:5(1� 2� + 2�2)�1) for �̂LMS = 1:

where P�1X (�) is the inverse c.d.f. corresponding to the random variable X.
It is clear that for � su�ciently small, the second branch dominates. For �

near 1 and � su�ciently large, however, the third branch dominates. Finally,

for � su�ciently far from unity and � su�ciently large, the �rst branch

dominates. A similar derivation can be set up for the second contaminating

process, revealing that for � and  su�ciently close and � su�ciently large,

setting �̂LMS =  gives the LMS estimator. If � increases further, however,

setting �̂LMS either to 0, +1, or �1 gives a lower median of squares. Two

examples of the objective functions of the LMS estimator for the Gaussian

AR(1) are given in Figure 2. Note that  = �1 has to be treated di�erently

from jj < 1, because an additional term is non-negligible in the expression
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Figure 2: Median of squares for the Gaussian AR(1) for the type 1 contam-

ination and �̂LMS = � (c�), the type 2 contamination and �̂LMS =  (c),

the type 1 contamination and �̂LMS = 0 (c0), and the type 1 contamination

and �̂LMS = 1 (c1), where � denotes the fraction of contamination. At the
bottom of each graph the arrows indicate the range over which each of the

objective values dominates.

for c. As  was left unspeci�ed, we obtain that the set of possible badness
values is expanding up to the value of � for which (breakdown to zero)

P�1
(e+�Y )2

([2� 2�]�1) � (23)

P�1
(e+(��)Y )2

([2� 4� + 5�2=2]�1);

or (breakdown to +1)

P�1
(e+(��1)Y )2

([2� 4� + 4�2]�1) � (24)

P�1
(e+(��)Y )2

([2� 4� + 5�2=2]�1);

or (breakdown to �1)

P�1
(e+(�+1)Y )2

([2� 4� + 3�2]�1) � (25)

P�1
(e+(��)Y )2

([2� 4� + 5�2=2]�1)

for all  2 [�1; 1]. For larger values of �, the boundary badness set is non-
expanding and the maximum bias curve is at over some part of the support

and equal to either �, 1��, or �1��. Note that this may not coincide with
the maximum bias, which is attained by letting � increase further. If we set

� close to 0.5, we obtain the LMS estimate of �̂LMS = 1. Before � = 0:5,

however, the LMS estimator may already have been broken to either 0 or
-1. Also note that this form of breakdown does not correspond to Genton's
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de�nition, where the objective function has to diverge. As shown above, the

LMS may still be �nite while the estimator has broken to 0 or 1.

A picture of the breakdown-curve of the LMS estimator in the Gaussian

AR(1) is given in Figure 3. Clearly, the breakdown-point varies with the true

probability measure of the stochastic process, i.e., with the value of �. The

breakdown-point is very close to zero for � near -1, 0, and 1. Moreover, there

are two kinks in the curve. The left kink reveals the point where breakdown

towards -1 is superseded by breakdown towards 0. Similarly, the second kink

gives the point where breakdown to 1 dominates breakdown to 0. Using our

de�nition of breakdown, it is clear that the breakdown-point of the (highly

robust) LMS estimator in a time-series context is far below 0.5, and even far

below 0.5/(p+ 1) with p the order of the autoregression.

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

0.05

0.1

0.15

0.2

0.25

�

Figure 3: Breakdown-curve of the LMS estimator in the Gaussian AR(1) as
a function of � .

6 Concluding Remarks

We introduced a new concept of breakdown, applicable to settings with in-
dependent and dependent observations. Using examples from linear and

non-linear regression, time-series, and spatial statistics, we showed that our

new de�nition comprises most of the familiar notions of breakdown. In some
cases, however, our de�nition di�ers from the traditional ones. Of partic-

ular interest is the setting of simple autoregressive time series, where our
breakdown-point illustrates the estimator has been broken, whereas tradi-

tional de�nitions still do not indicate breakdown. A completely di�erent

example from the non-linear regression setting revealed similar patterns.
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