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Abstract

In this paper we derive a structural measure for labor market density based
on the Ellison and Glasear (1997) index for industry concentration”. This
labor market density measure serves as a proxy for the number of workers
that can reach a certain work area within a reasonal amount of traveling
time. We apply this measure to a standard wage equation and find that
it takes account of almost half of the cross region wage variance (not ex-
plained by other observables). Moreover, it explains substantiallly more
than the traditional density measure: people per square mile.
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1 Introduction

Search frictions play an important role in the labour market. Job seekers and
vacancies do not meet instantaneously, their matching takes effort and time.
However, how much time search takes depends on the characteristics of the labor
market. An obvious factor that matters is the density of a labor market: the more
job seekers and vacancies are available in an area, the easier it is for them to find
an acceptable match. Several authors have developed models along these lines,
see e.g.: Diamond (1982), Burda and Profit (1996), Coles and Smith (1994,98)
and Wasmer and Zenou (1999). Although there is a large literature that suggests
that returns to scale in job search are constant, there are at least three reasons
why the number of job seekers and vacancies might matter. First, workers who
live in an area with many vacancies have a larger set of feasible jobs to choose
from. We expect that there will be fewer mismatches and shorter unemployment
spells after displacement in those areas. Second, workers with a larger set of
feasible jobs have more bargaining power and are therefore likely to earn higher
wages. Third, if workers are mobile, arbitrage will equalize reservation wages
within skill groups of workers across regions. This implies that the worker and
job types who gain the most from low search costs move to areas where the
contact rate is high. In Teulings and Gautier (2000), we argue that those are
typically the workers with the highest and the lowest skills because the market
is relatively thin for them.

A big obstacle in research in this area is that labor market density is diffi-
cult to measure. One likely candidate is simply the amount of workers and/or
jobs per square mile. However, a number of serious drawbacks to this measure
immediately come to mind. First, it ignores the role of infrastructure. What we
are really interested in is not the set of applicants within a certain distance of
the job, but within, say one hour commuting time. The relevant labor market
area should then be weighted by the number of highways and public transport
facilities. Moreover, distance is not the only factor. When particular locations
are more attractive for living while others have an advantage as work area, people
might be prepared to accept on average a longer commuting time.

These considerations suggest that we should look for a measure based on
revealed preferences. The measure that we propose is not based on weighted
commuting distance or time, but on commuting patterns that we can actually
observe. The idea is that we take the location of the job of a worker as given and
then analyze where the worker decides to live. If we observe that all workers live
in the same area as where they work, a given job can only be occupied by a limited
number of workers. This is typical for a small scale labor marked. Alternatively,
when workers working in a particular location live in many different areas, the
scale of the labor market is large. More specifically, our measure can be viewed
of as a model based index of geographic labor market density (or reachability)
similar to the dartboard index for industry concentration of Ellison and Glasear



(1997, EG from now onwards). The index can take any value between zero and
one. When it is equal to one, the labor market is hard to reach and the only
workers who work in a particular area are the ones who live there. When it is
equal to zero, the labor market is extremely easy to reach and we observe workers
from many different areas to be employed in this labor market. The measure has
the advantage that it controls for the size of the area on which it is defined so
that one can meaningfully compare results from different data sets (with different
levels of aggregation) with each other.

The plan of the paper is as follows. Section 2 derives the index from location
decisions of utility maximizing agents. Section 3 describes how the index can
be constructed from the 5% public use micro samples of the Census and how it
can be linked to the CPS. Finally, section 4 gives an illustration in the form of a
wage equation. It is a well known fact that there exists substantial cross-regional
variation in wages. We find that almost 50% of the regional variation is captured
by our density measure. Moreover, we find that our measure does a substantially
better job in explaining this variation than the number of persons per square
mile.

2 The index

Consider the decision problem for the k& th worker with a job in area w who has
to choose an area vy to live in. Let the utility for area h be given by:

log Trwn = 10g Twh +Ekwh (1)

where the eg,p’s reflect idiosyncratic factors (like the relative preference for clean
air, safety, theater availability etcetera) which are assumed to be independent
Weibull random variables which are independent of {7}, and 7, is a random
location specific variable, which is chosen by nature at the start of the process.
It reflects the attractiveness to live in a certain area (given that the agent’s job is
in w) for a typical agent. Conditional on the realization of .1, ..., T,,yand given
our assumptions on e, we can write:

T wh

225 Mwj

P’I"Ob{vk = h| 7T—wha -"77??UH} =

which is a conditional logit model, see McFadden (1973). Next, we make the same
parametric restrictions on the distribution of the {7,;} as EG. First, we want
that on average the model reproduces the overall distribution of residence (i.e., it
puts more workers in New York than in a small village). Therefore, assume that:

Twh
Eﬂ'wl,...,ﬂ'wlwz' 7?_ = xh (2)
J nwj



where, xp,, is the relative size of area h (fraction of total population who lives in
h). Second, we have to make assumptions with regard to the relative importance
of "reachability” to the agents. Let the joint distribution of 7, be such that
there is a single parameter ,, € [0, 1] for which

var <Z7ju7’_:wj> = Uy = YuZn(l — xp) (3)

The variance v,, measures how sensitive the agent’s utility is to a good fit. For
jobs in rural areas, the variance is likely to be high because those jobs are typically
hard to reach and therefore the utility of living in another area than the area where
one’s job is located will be small. So the few areas that are within reasonably
traveling distance from the work area have high 7,;’s, the rest of the areas have
Twh= 0. When ~,, = 1, the variance, v,,, reaches a maximum (since the maximum
variance of a variable with mean x;, that lies between zero and one is zj, [1 — xp]).
The variation in idiosyncratic characteristics e, is dominated by the variation
in the location specific factors, log 7,,. When v, = 0, the location decision is
totally dominated by the agent’s idiosyncratic taste factors. The agent’s decision
on where to live is independent of the location of the job and each living area h is
chosen with probability xj. The parameter ~,, therefore captures the importance
of regional factors relative to idiosyncratic taste factors of the agents.

Now we will define an unbiased estimator for ~,,. Let s, be the number of
workers working in area w and living in area h as a share of the total employment
in area w. The following relation applies between -, on the one hand and s,y
and the sizes of the areas of residence x5 on the other hand.

Proposition 1 In any specification of the location choice model in which agents
1,2,...,N choose locations to mazimize utility that satisfy equations (2), and (3),
an unbiased estimator for v, is:

o Eh(swh — xh)Q

T4

(4)
Proof: See appendiz 1.

This proposition is a special case of EG’s Proposition 1. To illustrate how this
measure is related to the scale of the labor market, consider a job in area w. Let
N be the total population and let n be the number of workers who is willing to
work in area w and let all of them have an equal probability to get this job. Hence,
n is a measure for the scale of the labor market. Their probability to get this job
is 1/n and the probability for the rest of the population, N —n, to get the job is
equal to zero. Hence, a fraction (1—n/N) of the population has a zero probability
to work in w and a fraction n/N has a probability 1/n. Since the variance of
the binomial distribution for a stochast taking the values (0,b) is b*p(1 — p), the
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variance of this process is: V = (1/n)?[(1 —n/N)n/N] =1/N[1/n — 1/N]. Since
V = 7%(1 — %), we get for N — oo, 7 ~ % Hence, in this simple binomial
example where workers either do or do not belong to a market and where all
workers in a market have an equal probability for a particular job, v is equal to
the inverse of the scale of the labor market.

The above analysis takes as a starting point the work area of the worker and
then analyses the choice of the optimal living area. We could also have pro-
ceeded the other way around, by analyzing the choice of the optimal work area
conditional on the living area. Our actual conditioning on work area in our cal-
culations is based on the idea that work areas can be heavily concentrated in city
centres. Then, conditioning on living area would underestimate the density of
the city centres. Most people living in Manhattan are likely to work in Manhat-
tan, incorrectly suggesting that Manhattan is a low density area. However, most
people working in Manhattan live in other regions. Hence, by conditioning on
work areas we avoid the problem of the mismeasurement of ~,, in city centres.

An advantage of this measure is that it is easy to calculate. All one needs is
data with information for a set of workers on the location of their job and their
home. We do not need to know the spatial relations between all regions, all this
information is embedded in the data. However, there is one problem. Ideally,
this measure is independent of the level of aggregation of the location measure.
Whether one measures location at the state level or county level should not affect
the calculated value of ~,, for a state. However, this requires that the values of
{;rwh} are drawn independently of the aggregation scheme of subregions into re-
gions. Obviously, this assumption is violated in our application. Any aggregation
will merge adjacent sub-regions into a new region. Hence, the values of {7, }
for sub-regions within a region will be highly correlated. The consequences of
this can be seen easily by considering the limiting effect of the aggregation of all
subregions into a single region. All workers will live in the area where they work
and hence ,, will be equal to unity. In general, aggregation will therefore tend to
reduce the estimate of v,,. As long as the number of regions is large and the sizes
of the regions do not vary too much, this problem is not likely to greatly affect the
relative sizes of the calculated v,’s. In the next section, we present calculations
of 7, from Census data. Aggregation bias of the sort described above does not
seem to play an important role since for this particular application we did not
find ~,, to be higher in large areas.

3 Data

3.1 Constructing the index from census data

The US Census data are well suited for the construction of our measure because
they contain detailed information on both the area of residence and the work area



at low levels of aggregation. We use the 5% public use micro samples (PUMS)
of the 1990 census. The most disaggregate geographic unit in the census is the
Public Use Micro data Area (PUMA). A typical PUMA is populated by at least
100,000 persons and is identified by a five-digit number which is unique within
states. In dense areas, PUMA’s define a subset of a single county while in the
rural states, PUMA’s consist of a number of different counties. To construct our
density measure we also need information on the area where the worker works
(PUMAW). This is however defined at the 2 digit level, which corresponds exactly
to the first 2 digits of the PUMA’s of residence. The analysis will therefore be
on 2-digit PUMA’s With the method of the previous section we were able to
construct a -, for each of the 1138 2-digit PUMA’s.!

In calculating ~,,, we included only the workers who were full time employed
in the US and who did not live or work in Alaska or Hawaii.. Since in general,
each area is very small compared to the whole country, the denominator of (4) is
close to one (i.e. using Census data, we found for the US: 3, 22 = 0.0024) and
~w 18 therefore almost entirely determined by X, (Syn — xh)2. To get an idea of
the range of possible values v, can obtain, we found =, to be equal to 0.07 in
Northern New Jersey while for some areas in Arizona, Maine, Missouri, Montana,
Kansas and Wyoming we found values of v,, as high as 0.95.

A simple OLS regression of (log) 7, on the (log) relative size of the area
shows that there exists a negative relation between ,, and relative area size (the
elasticity = —0.1, s.d.=0.02). When aggregation bias would have been important,
this relation should be positive (see the discussion in the previous section). The
reason for the negative relation is most likely that central city areas are both
larger (in terms of inhabitants) and easier to reach than non-central city areas.

Finally, since {7, } are not independent we do not want the standard devia-
tion of the size of the PUMA’s to be too large. This is luckily not the case. Both
the mean and the standard deviation of the relative PUMA size are 0.001.

Figure 1 plots the size distribution.

FIGURE 1 ABOUT HERE

3.2 Using additional information from the CPS

For many economic applications, the CPS contains crucial individual information
which is not present in the Census. The CPS does however not contain informa-
tion on the work location. We therefore link the Census based ,’s to the place
of residence in the CPS. This is not a trivial operation because there is no one to
one match between the PUMA’s (public use micro area ) of the census and the
CMSA/M(S)A (central metropolitan area) and state classification of the CPS.
We therefore use the following strategy to map the PUMAW to the (C)MSA ’s
of the CPS. First, we match the PUMAW’s to MSA /CMSA ’s, using the method

'We restricted our analysis to the workers who were employed.



of Jaeger et al. (1997). We aggregate by taking weighted (by relative area size)
averages of the relevant v,’s.? In most states there are however areas which do
not belong to a CMSA /MSA. Those are typically rural areas. For those areas we
also calculated weighted average +,, ’s per state.® This leaves us with in total 182
unique v,,’s. To illustrate this aggregation procedure, consider the following ex-
ample for Indianapolis, IN. At the 2-digit PUMA level, the Indianapolis CMSA,
consists of four PUMA’s, each with a unique Yoensus- In the CPS, Indianapolis
is treated as a single geographical unit. We take weighted (by x,,) averages of
Yeensus 0 get a unique yopg for Indianapolis.

PUMA | CMSA, state Yoensus | Tw weight | vops
1 Indianapolis, IN | 0.54221 | 0.004411 | 0.76854 | 0.53501
33 Indianapolis, IN | 0.53478 | 0.000289 | 0.05029 | 0.53501
34 Indianapolis, IN | 0.56212 | 0.000387 | 0.06737 | 0.53501
35 Indianapolis, IN | 0.47045 | 0.000653 | 0.11380 | 0.53501
Thus, although the geographical measures of the CPS are less detailed than

the ones of the census, we do use the disaggregate information as much as possible.
Figure 1 depicts the density of ~,, for the 1138 Census areas while Figure 2 plots
Y for the 182 CPS areas. The mean for the Census 7, is 0.597 and the standard
deviation is 0.235 while for the CPS those values are respectively 0.586 and 0.217.
Whereas the weighted (by area size) mean for the Census 7, is 0.539 while it is
equal to 0.540 for the CPS ~,. Hence, we do not loose much variation in our
measure by this spatial aggregation.

Figure 1 about here

Figure 2 about here

We expect v, to be related to population density (measured in persons per
square mile) and the amount of highways and railroads in an area. Figures 3
and 4 are illustrative in this respect. Figure 3 shows a map of all the counties
in the U.S., where the darker areas are more densely populated. In this Figure
we inserted some values of ~,, based on the Census public use micro areas.
We clearly see that densely populated areas have smaller / s.* The correlation
between ~,, and the amount of people per square mile is -0.43. If we compare the

2We made some slight adjustments in their program since we observe only 2 digit PUMAW’s
and the CMSA /MSA’s of the CPS and Census do not match exactly. For example, in the CPS,
Denver and Houston have respectively the numbers: 2080 and 3060, while in the census those
numbers are 2082 and 3062. For most cases, changing the last digit into zero was sufficient,
only for Miami , the CMSA is 5000 in the CPS and 4992 in the Census.

3For the definitions of (C)M(S)A’s we refer to the apendix. Our density measures and rel-
evant weights per PUMAW of the 1990 census and per (C)MSA/MA of the CPS, and SAS
formats for (C)MSA’s and states can be found at: http: // www2.tinbergen.nl / “gautier / lm-
density.html. We present aggregation results for complete (C)M(S)A’s and for (C)M(S)A*state
area’s. In the first case, Northern New Jersey is included in the NY-CMSA, whereas in the
second case it is not.

4This picture is mainly illustrative for the relation between v,, and population density be-
cause the larger cities sometimes consist of multiple counties and PUMAs.



cities from the East Coast with those from the West Coast, we see that jobs in
the more densely populated East Coast cities are easier to reach since 7, tends
to be smaller there.

Figure 3 about here

In Figure 4 we have plotted the North-Eastern states of the US. The picture
shows the (C)M(S)A’s and all highways and railroads. The numbers in the map
represent the CPS aggregated 7/ s (which will be used in the next section). Areas
with lots of traffic connections like Boston, Chicago, Detroit and NYC have much
smaller ~/ s than for example the rural parts of Tennessee, and Iowa.

4 Application: Estimation of a wage equation

In this section we look at the effect of our labor market density measure on wages.
This application merely serves as an illustration. We do not have a structural
interpretation of our estimation results per se. We put forward the simple hy-
pothesis that wages are correlated with labor market density, for example by cost
of living differentials, and we are just interested in what fraction of the variances
in wages which is explained by regional factors can be attributed to labor mar-
ket density. Hence, our results are a proof by implication: if density matters, it
should pick up a substantial part of the cross-regional variation in wages. First,
the following equation is estimated by OLS on 1991 CPS data:

IOg Wi = Qq + ﬁle + )\’}/j + €145 (5)
SSR = 20562.56, R? = 0.3509

Where log w;; is the log (gross) hourly wage of worker ¢ from region j and X;
contains all the standard variables of the wage equation®. The coefficient \ (with
t-value) is : -0.39 (36.90). Compared to the female, -0.19 (17.23), and black
-0.08 (10.72) dummies, this is a huge effect. Next we are interested in the extra
variance of wages that can be explained by regional differences and which fraction
of this is taken care of by our density measure. Consider therefore the following
two regressions:

logw;; = g+ BoXi + €2 (6)
SSR = 20985.44, R? = 0.3375

lOg W;; = ﬁgXl + XRj + E3ij (7)
SSR = 19927.505, R* = 0.3662

5As explanatory variables we took: a constant, female, unmarried, female*unmarried, and
black dummies, dummies for completed education (12, 14, 16, 18 years), education (yrs), cubic
polinomial in experience and experience*education,female*experience, female* not married,
female*not married* experience, N = 66211.



Where X; contains all the standard variables of the wage equation which we
discussed before, R; is a set of 49 state (we excluded Alaska and Hawaii) and 126
(C)M(S)A dummies (for each possible (C)M(S)A state combination there exists
a unique 7y, ).

We can conclude from those equations that regional effects account for 4.3% of
the unexplained variance of wages and that our density measure explains 46.7%
of this extra variation, which is substantial.

Finally, we tested how well our measure performs compared to the people-
per-square-mile-measure (ppsm). For this test we restrict ourselves to the 126
(C)MSA’s because only for those areas we have exactly matching information
on ppsm. The R¥s of equations: (5), (6) and (7) are respectively: 0.353 (\ =
—0.29(19.32)), 0.346 and 0.362.5 The equivalence of (5) with ppsm/10000 instead
of v, gives us an R? of 0.350 (Appsm = 0.85 (16.05)). In other words, regional
dummies explain 3.5% of unexplained wage variance, of this additional variance,
31.4% is captured by 7, while only 17.1% is captured by people per square mile.

5 Discussion

We have shown that we can give a meaningful structural labor market inter-
pretation of the Ellison and Glaeser (1997) index of concentration. One strong
assumption we made is that the decision where to work and where to live are
made sequentially rather than simultaneously, which is often not the case. The
large and significant effect that our density measure has on wages is however
encouraging. In future work we plan to use the measure to test for differences in
match quality and match surplus in dense and non dense labor markets and in
addition we want to test whether displaced workers find new jobs faster in dense
labor markets.
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A Appendix

A.1 Proof Proposition 1
First, define:

Gw = Z(Swh — .Th>2

h

Write py, for gi‘;_rh - and py, for pppn, and use the law of iterative expectations to
T

write the definition of £ (Gy) as:

E(Gu) = Y BpE | (sun — @)

Next, note that since zis the mean of fﬂ%ﬁ— = pp, and by the formula for the con-
i

ditional variance: var(swn—xn|pn) = var(swn|pn) = F {[(swh —xp) — E ((Swn — :Uh)|ph)]2 |ph}

= E[(Swn — 0)2|pn] = E [8wn — zalpn)]” = E[(Swn — 1) |pr] = var(swalpa) +
E [(Swn — zn|pn)]® .7 Therefore,

E(Gyw) =Y Ey, var(sunlpn) + By, [Swn — zn|pi]”
h

TAlternatively, B[S, (sn — 1) = S0 E([(sh — pn +pn — 2n))* = S5 Ep 32, var(sy) +
>onlsn— xh‘P]Q

10



Use Syp = % >k Ukwn (Where g, is a dummy which equals 1 if worker & who
holds a job in area w, lives in h and zero otherwise and W is the size of area w)
and expanding variance terms gives:

E(Gy) = ;Eph [(%)2 var(? ukh|ph)] + E [sun — zn|pn)

Use the fact that when X has a Bernoulli distribution, its variance is py(1 — py)
and note that F [syn — zn|pr] = (pn — 1) and E [syn — xh|ph]2 = E|(pn — z1)?].
Hence,

BG) = B {2 (1 = ) + (o — )} ®)

According to the specifications of (2) (3), E(py) = x, and E[(pn — x1)?] =
var(pn) = Yw(zn — z1). Together this implies that:

E(pn—(pn—2)*) = E(pn— (0} + 2 = 2m021)) = 20 — Yulzn — 27) =
E ((ph - pi) = p — EQ2puan — 73) — Yo(on — 27) =
2

on — (207 — 23) — yolzn —27) = (1 —yw)(zh — 77)

Substitute the relation above in (8) and adding subscript w again, gives:

BG) = S5 () (-l - -] o

- - |(f5) (-] =0-Tare (0

A.2 Definitions

e MA: a large population nucleus,together with adjacent communities that
have a high degree of economic and social integration with that nucleus.
Each MA must contain either a place with a minimum population of 50,000
or a Census Bureau-defined urbanized area and a total MA population of
at least 100,000 (75,000 in New England). A MA comprises one or more
counties (cities and towns in New England) that have close economic and
social relationships with the central county. An outlying county must have a
specified level of commuting to the central counties and must meet certain
standards regarding metropolitan character, such as population density,
urban population, and population growth.

In the CPS, two related (not necessarily mutually exclusive) related concepts
(1990 definitions) are used:

11



e MSA : relatively freestanding and not closely associated with other MA’s,
typically surrounded by non-metropolitan areas; the title of an MSA con-
tains the name of its largest city and up to two additional city names.

e CMSA: consolidated metropolitan area. MA of more than 1 million people
which may include one or more large urbanized counties that demonstrate

very strong internal economic and social links within a CMSA. An example
of a large CMSA is New York-New Jersey-Long Island.

B Pictures
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Figure 1: Density of area sizes, mean = 0.001, 2 = 0.001
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Figure 2: Density plot of v from 1138 Census areas

Figure 3: Density plot of v from 182 CPS areas
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Figure 4: The relation between persons-per-square-mile and yopg
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C (C)MSA’s/states ranked from dense to non
dense

1 Washington DC Washington, 0.18201

2 Florida Orlando, FL 0.19529

3 Massachusetts Boston-Lawrence-Salem-Lowell-Brockton, MA 0.19993
4 Minnesota Minneapolis-St.Cloud MN (C) 0.21236

5 Connecticut Hartford-New Britain-Middletown-Bristol CT 0.26075
6 New Jersey Philadelphia-Wilmington-Trenton,NJ (C) 0.28888
7 Texas Dallas-Fort Worth, TX (C) 0.30358

8 Colorado Denver-Boulder, CO (C) 0.30739

9 Massachusetts Worcester, MA 0.31041

10 Connecticut New Haven-Meriden CT 0.31172

11 Michigan Detroit-Ann Arbor, MI (C) 0.31810

12 Rhode Island Providence-Pawtucket-Woonsocket, RI 0.31855
13 Georgia Atlanta, GA 0.32859

14 New York Buffalo-Niagara Falls, NY (C) 0.33560

15 Virginia Richmond-Petersburg, VA 0.34729

16 New York N.Y.-North. N.J.-Long Island, NY (C) 0.34776
17 Michigan Lansing-East Lansing MI 0.35209

18 Virginia Washington, VA 0.36757

19 Louisiana Baton Rouge, LA 0.37122

20 Tennessee Chattanooga, TN 0.37835

21 New York Albany-Schenectady-Troy, NY 0.37913

22 California Los Angeles city, CA 0.37934

23 Louisiana New Orleans LA 0.38304

24 Massachusetts Springfield, MA 0.38791

25 New York Syracuse, NY 0.38889

26 Kentucky Louisville, KY 0.39682

27 Maryland Baltimore, MD 0.40908

28 Michigan Grand Rapids MI 0.41137

29 Tennessee Knoxville, TN 0.41209

30 Florida Miami 0.41688

31 Oregon Portland OR (C) 0.41916

32 Illinois Chicago-Gary-Lake County, IL (C) 0.41966

33 Kentucky Cincinnati-Hamilton, KY (C) 0.42248

34 Missouri St. Louis, MO 0.42903

35 Maryland Washington, MD 0.43077

36 Texas Houston-Galveston-Brazoria, TX (C) 0.43306

37 Connecticut rural 0.43436

38 Virginia Norfolk-Virginia Beach-Newport News VA 0.43863
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39 Michigan Flint, MI 0.44093

40 Illinois Rockford, IL 0.44260

41 North Carolina Fayetteville, NC 0.44308

42 Connecticut New London-Norwich, CT 0.44369

43 Pennsylvania Philadelphia-Wilmington-Trenton, PA (C) 0.44455
44 Kansas Kansas City KS 0.44475

45 North Carolina Greensboro-Winston-Salem-High Point, NC 0.45378
46 California Sacramento, CA 0.47082

47 California Modesto, CA 0.47128

48 Tennessee Memphis, TN 0.48094

49 Texas Beaumont-Port Arthur, TX 0.48404

50 Ohio Cincinnati-Hamilton, OH-KY-IN (C) 0.48589
51 Florida Melbourne-Titusville-Palm Bay, FL 0.49493
52 Washington Spokane, WA 0.49705

53 Pennsylvania Harrisburg-Lebanon-Carlisle, PA 0.49721
54 Missouri Kansas City MO-KS 0.49750

55 Indiana Fort Wayne, IN 0.49753

56 South Carolina Columbia, SC 0.50242

57 California Fresno, CA 0.50661

58 New York Rochester, NY 0.50816

59 Texas Austin, TX 0.51424

60 California San Francisco-Oakland-San Jose, CA (C) 0.51455
61 South Carolina Augusta, GA-SC 0.51538

62 Towa Des Moines, TA 0.51545

63 California Bakersfield, CA 0.52003

64 Washington Seattle-Tacoma, WA (C) 0.53220

65 Mississippi Jackson, MS 0.53408

66 Indiana Indianapolis, IN 0.53501

67 Wisconsin Madison, WI 0.53776

68 Tennessee Nashville, TN 0.54252

69 Oregon Eugene-Springfield, OR 0.54305

70 Illinois Peoria, IL 0.54461

71 Pennsylvania Allentown-Bethlehem, PA-NJ 0.55004
72 Massachusetts rural 0.55970

73 Kentucky Lexington-Fayette, KY 0.56318

74 Tllinois Davenport-Rock Island-Moline, TA-TL 0.56678
75 Oklahoma Oklahoma City, OK 0.57660

76 Georgia Macon-Warner Robins, GA 0.57871

77 Ohio Youngstown-Warren, OH 0.58012

78 Nevada Reno, NV (0.58201

79 Ohio Dayton-Springfield, OH 0.58718

80 Georgia Chattanooga, TN-GA 0.58889

81 Nebraska Omaha, NE-TA 0.59182
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82 Wisconsin Milwaukee-Racine, WI (C) 0.59276

83 South Carolina Charleston, SC 0.59322

84 North Carolina Raleigh-Durham, NC 0.59538

85 Colorado Colorado Springs, CO 0.59608

86 Texas San Antonio, TX 0.59681

87 New Hampshire rural 0.59974

88 Wisconsin Appleton-Oshkosh-Neenah, WI 0.60155

89 North Carolina Charlotte-Gastonia-Rock Hill NC-SC 0.60192
90 California Salinas-Seaside-Monterey, CA 0.61512

91 Ohio Toledo, OH 0.61773

92 Indiana Louisville, KY-IN 0.61824

93 Towa Davenport-Rock Island-Moline, TA-IL 0.62349

94 Alabama Birmingham, AL 0.62628

95 Alabama Montgomery, AL 0.62861

96 Tennessee Johnson City-Kingsport-Bristol, TN-VA 0.62942
97 Michigan Saginaw-Bay City-Midland, MI 0.64866

98 West Virginia Huntington-Ashland, WV-KY-OH 0.65689
99 Ohio Columbus, OH 0.66128

100 South Carolina Greenville-Spartanburg, SC 0.66141
101 Indiana rural 0.66600

102 Pennsylvania Pittsburgh-Beaver Valley PA (C) 0.67295
103 Oklahoma Tulsa, OK 0.67564

104 Florida Sarasota, FL 0.67790

105 South Carolina Charlotte-Gastonia-Rock Hill NC-SC 0.68105
106 Maryland rural 0.69311

107 Ohio rural 0.69361

108 New York Binghampton, NY 0.69981

109 Ohio Canton, OH 0.70070

110 Utah Salt City-Ogden, UT 0.71502

111 Delaware rural 0.71702

112 Vermont rural 0.71874

113 Florida Jacksonville, FL 0.71967

114 Indiana Evansville, IN-KY 0.72104

115 Pennsylvania York PA 0.72320

116 Pennsylvania Reading, PA 0.72631

117 Pennsylvania Scranton-Wilkes-Barre, PA 0.72731

118 Virginia rural 0.72983

119 Pennsylvania rural 0.73174

120 Alabama rural 0.73288

121 Georgia Augusta, GA-SC 0.73401

122 New York Utica-Rome, NY 0.73627

123 North Carolina rural 0.74169

124 Maine rural 0.74180
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125 Arkansas Little Rock-North Little Rock, AR 0.74541
126 South Carolina rural 0.74941

127 Tennessee rural 0.75257

128 Michigan rural 0.75505

129 New York rural 0.75518

130 West Virginia rural 0.75523

131 Illinois rural 0.75701

132 Louisiana rural 0.75717

133 Florida West Palm Beach-Boca Raton-Delray FL 0.75848
134 Georgia rural 0.76103

135 Florida Tampa-St. Petersburg-Clearwater, FL 0.76119
136 Mississippi rural 0.76361

137 Texas Killeen-Temple, TX 0.76615

138 Texas Corpus Christi, TX 0.76942

139 West Virginia Charleston, WV 0.78167

140 California Stockton, CA 0.78215

141 Missouri rural 0.79070

142 Minnesota rural 0.79186

143 Kentucky rural 0.79450

144 Florida rural 0.79725

145 Wisconsin rural 0.79860

146 Arkansas rural 0.80362

147 Alabama Mobile, AL 0.80454

148 Kansas Wichita, KS 0.80993

149 New Mexico rural 0.82036

150 Texas rural 0.82189

151 North Dakota rural 0.82542

152 Towa rural 0.82800

153 Washington rural 0.83144

154 Florida Lakeland-Winter Haven FL 0.84019

155 Pennsylvania Lancaster, PA 0.84155

156 California rural 0.84434

157 California Santa Barbara-Santa Maria-Lompoc, CA 0.84485
158 Arizona rural 0.85060

159 Colorado rural 0.85206

160 Louisiana Shreveport, LA 0.85560

161 Nebraska rural 0.86141

162 Idaho rural 0.86383

163 Kansas rural 0.86384

164 California Visalia-Tulare-Porterville, CA 0.86957
165 Oklahoma rural 0.87242

166 Pennsylvania Erie, PA 0.87639

167 Florida Daytona Beach, FL 0.87903
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168 Oregon rural 0.87992

169 Utah rural 0.89050

170 Utah Provo-Orem, UT 0.89271

171 Texas Brownsville-Harlingen, TX 0.89633
172 Florida Fort Myers-Cape Coral FL 0.89751
173 Florida Pensacola, FL 0.90873

174 South Dakota rural 0.91771

175 Nevada Las Vegas NV 0.92344

176 Texas McAllen-Edinburg-Mission, TX 0.92793
177 Wyoming rural 0.93019

178 Texas El Paso, TX 0.93164

179 California San Diego CA 0.94695

180 Arizona Phoenix, AZ 0.94707

181 Montana rural 0.94790

182 Arizona Tucson, AZ 0.95404

20



