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A COMPARISON OF MINIMUM MSE AND MAXIMUM

POWER FOR THE NEARLY INTEGRATED NON-GAUSSIAN

MODEL

By Karim M. Abadir and Andr�e Lucas

University of York and Vrije Universiteit Amsterdam

We study the optimal choice of quasi-likelihoods for nearly inte-
grated, possibly non-normal, autoregressive models. It turns out that
the two most natural candidate criteria, minimum Mean Squared Er-
ror (MSE) and maximum power against the unit root null, give rise to
di�erent optimal quasi-likelihoods. In both cases, the functional speci�-
cation of the optimal quasi-likelihood is the same: it is a combination of
the true likelihood and the Gaussian quasi-likelihood. The optimal rela-
tive weights, however, depend on the criterion chosen and are markedly
di�erent. Throughout, we base our results on exact limiting distribution
theory. We derive a new explicit expression for the joint density of the
minimal su�cient functionals of Ornstein-Uhlenbeck processes, which
also has applications in other �elds, and we characterize its behaviour
for extreme values of its arguments. Using these results, we derive the
asymptotic power functions of statistics which converge weakly to com-

binations of these su�cient functionals. Finally, we evaluate numerically
our computationally-e�cient formulae.

1.. Introduction. We study the optimal choice of quasi-likelihoods for
inference in the autoregressive (AR) model

yi = �yi�1 + "i(1)

where "i � IID(0; �2") with �2" < 1. We assume that the (unknown) p.d.f. of
"i exists and is given by f("i). We will be particularly interested in the case
where � is equal or close to unity, see Chan and Wei (1987) and Phillips (1987).
We condition on y0, and we do not consider explicitly higher order AR terms
or additional short term dynamics. Phillips (1987) has shown how to adjust for
these by imposing the appropriate mixing conditions on "i and correction factors
such that our subsequent analysis is una�ected.

Much of the literature focuses on the case of Gaussian "i and the likelihood
principle, or alternatively possibly non-Gaussian "i and the Gaussian quasi-
likelihood principle. If innovations are truly Gaussian, Elliott, Rothenberg, and
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2 K.M. ABADIR AND A. LUCAS

Stock (1996) show that common tests for H0 : � = 1 have a power that almost
coincides with the Neyman-Pearson pointwise power envelope. Typical examples
of such tests include the Studentized t statistic and the normalized autocorrela-
tion. By contrast, Rothenberg and Stock (1997) show that under non-normality
the same tests clearly display suboptimal power against a broad range of point
alternatives, if the true likelihood is used to construct the tests. Therefore, there
appears to be room for further improvement of the usual testing procedures when
the true likelihood is non-Gaussian.

Our results complement earlier work by Cox and Llatas (1991). They con-
sider the optimal choice of quasi-likelihoods from an asymptotic MSE perspec-
tive. Based on MSE, the optimal quasi-likelihood is a linear combination of the
true likelihood and the Gaussian quasi-likelihood. The weight assigned to the
Gaussian quasi-likelihood becomes negligible for distant alternatives. In the con-
text of testing for H0 : � = 1, however, it might be equally natural to consider
power-related optimality criteria rather than MSE. We show that the form of
the optimal quasi-likelihood in this case is analogous: it is a linear combination
of the true and the Gaussian quasi-likelihood. Surprisingly, however, the weights
di�er markedly from those of Cox and Llatas. In particular, the weight of the
Gaussian quasi-likelihood remains far from zero for a wide range of alternatives,
thus impairing the optimality of the maximum likelihood estimator for these al-
ternatives. Moreover, the discrepancy between the MSE-optimal weights and the
power-optimal weights is a reminder that optimal estimation and optimal test-
ing lead to di�erent statistical procedures, which are not even asymptotically
equivalent in our context.

The plan of the paper is as follows. In Section 2, we set out the basic power
optimization problem for tests of H0 : � = 1 in the framework of nearly inte-
grated non-Gaussian time series. This leaves us with a one-dimensional maxi-
mization problem under one constraint. The �rst order conditions of this prob-
lem involve expectations of two functionals of an Ornstein-Uhlenbeck process.
We exploit the notion that these functionals jointly form a minimal su�cient
statistic for this process (which belongs to a curved exponential family) to de-
rive analytically a new explicit expression for their joint density in Section 3.
The formula for this density can also have applications in �elds beyond the sub-
ject of our paper. The exact expression for the density is complemented with
asymptotic expansions which characterize its behaviour for extreme (small or
large) values of its arguments. Using the explicit form of the density, we are able
to compute power functions for the Studentized t statistic and the normalized
autocorrelation coe�cient, up to any desired accuracy, and their asymptotic ap-
proximations too. The power functions are used to quantify the optimal choice of
quasi-likelihoods in Section 4. We compare the optimal choices from a maximum
power perspective (using both statistics) and a minimum MSE perspective. The
true maximum-likelihood estimator is suboptimal in both cases. An important
distinction emerges between optimality from a power and an MSE point of view.
Some concluding remarks can be found in Section 5. In order not to interrupt the
exposition, the proofs and some additional notation are gathered in an Appendix.
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Throughout this paper we make use of the following notation. We use � for
denoting the distribution of a random variate, e.g., "t � N(0; 1), or for denoting

asymptotic equivalence, e.g., (1 + x)�1 � x�1 for large jxj. The symbols w! and
p! denote weak convergence and convergence in probability, respectively. The
signum (sign) function is written as sgn(x). Expectations are denoted by E [�]
and probabilities by P[�]. Finally, �(�) and �(�) are used to denote the standard
normal p.d.f. and c.d.f., respectively.

2.. Power optimization. Let �q(�) denote the logarithm of a quasi-density
used for estimating the autoregressive parameter �n. As explained in the intro-
duction, we work in a local-to-unity framework. In particular, following Chan
and Wei (1987) and Cox and Llatas (1991), we assume that c = n � (� � 1) is
constant in the sample size n. Taking a locally quadratic approximation to the
log-quasi-likelihood, see Rothenberg and Stock (1997), we obtain

logQ(c; c0; q) = �
nX

i=1

q(Oyi �
c0

n
yi�1)(2)

= �
nX

i=1

q("i +
c� c0

n
yi�1)

= �
nX

i=1

�
q("i) +

c� c0

n
yi�1q0("i)+

(c� c0)
2

2n2
y2i�1q

00("i)
�
+ rn(c);

where rn(c) is the remainder term, O is the backward di�erence operator such
that Oyi = yi � yi�1, and q0 and q00 are the �rst and second derivatives of q,
respectively.

We make the following assumption.

Assumption 1. (i) The innovations "i are i.i.d. with density f(�). (ii) The
density f(�) is twice continuously di�erentiable and vanishes on the edge of its

support. (iii) The log-quasi-density q(�) is twice continuously di�erentiable and

q00(�) satis�es a linear Lipschitz condition. (iv) ("i; q0("i)) has zero mean and �nite

covariance matrix.

As mentioned in the introduction, the i.i.d. assumption can be relaxed by
imposing the appropriate mixing conditions on "i, see Lucas (1995) and Elliott
et al. (1996). The smoothness of the density in (ii) ensures that the maximum
likelihood estimator and the information matrix are well de�ned. The assumption
on the tails of f(�) makes it possible to replace

R
q00(")f(")d" by �

R
q(")f 0(")d"

and can be dispensed with at an increased complexity in the derivations. Con-
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dition (iii) is a standard condition in this context of quasi-maximum likelihood
estimators and nearly non-stationary time series, see, e.g., Lucas (1995).

Our main interest in this paper is in the optimal choice of the quasi-likelihood
q. In particular, we will study the impact of di�erent optimality criteria on the
choice of q. Therefore, for simplicity we follow Rothenberg and Stock (1997) and
abstain from estimating the variance �2" of the innovations. Note that consistent
estimators of �" are asymptotically ancillary for �, so that the choice of any
consistent method of estimating �" does not a�ect our subsequent derivations.

Using Assumption 1, the following theorem can be derived from Rothenberg
and Stock (1997) for the limit of the quasi-likelihood ratio of testing c = c0
against the �xed alternative c = c1.

Theorem 1 (Rothenberg & Stock). Given Assumption 1,

n�1
nX

i=1

yi�1q0("i)
w! �"�q � (�qR+ �

q
(1� �2q)S);(3)

and

n�2
nX

i=1

y2i�1q
00("i)

w! �2"�qS;(4)

where �2" = E ["2i ], �
2
q = E [q("i )

2], �q = E [q00 ("i)], �q = E ["iq
0("i)]=(�"�q), R =R 1

0
Uc(�)dB1(�), S =

R 1
0
Uc(�)

2d� , B1 is a standard Brownian motion, Uc is the

Ornstein-Uhlenbeck process generated by the boundary condition Uc(0) = 0 and

dUc (�) = cUc (�) d� + dB1 (�) ;(5)

and � is a standard normal random variate independent of B1.

Moreover, the likelihood ratio for testing c = c0 against c = c1 converges weakly

as

QLR(c; c0; c1; q) � logQ(c; c0; q)� logQ(c; c1; q)

w! (c0 � c1)�q�"

�
�qR+ �

q
(1� �2q)S �

(c0 + c1 � 2c)�q�"S

2�q

�
:(6)

We are interested in the case c0 = 0, i.e., the null of a unit root H0 : � =
1. The upper bound for the power of any unit root test in this context, i.e.,
the power envelope, follows from the Neyman-Pearson lemma and is given by
P[QLR(c1; 0; c1; f) < �], where f is the unknown true density of the innovations
"i, and P[QLR(0; 0; c1; f) < �] is equal to some prespeci�ed signi�cance level, see
also Rothenberg and Stock (1997). Using the power envelope, we can evaluate the
power performance of commonly employed unit root tests like the Studentized t
statistic

tq =
�̂q � 1

�̂q
;(7)
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and the normalized autocorrelation coe�cient,

n � (�̂q � 1);(8)

where �̂q denotes an estimator of � based on the log-quasi-density q(�), and
where �̂�2q is an estimator of minus the Hessian (observed information). The
usual choice for q is the Gaussian density, see Fuller (1976). Non-Gaussian quasi-
densities have been used as well, see, e.g., Cox and Llatas (1991), Lucas (1995),
and Rothenberg and Stock (1997).

It is useful to remark at this stage that the power envelope does not coincide
with the power of the likelihood ratio (LR) test statistic. In particular, the LR
test has the same asymptotic distribution under local alternatives as the squared
Studentized t statistic of (7). As we show in Section 4, the Studentized t statistic
does not attain the power envelope uniformly in c1. Given the relation between
the Studentized t statistic and the LR test, this also holds for the latter.

Rothenberg and Stock (1997) show that for the non-Gaussian case the usual
tests in (7) and (8), though very close to the power envelope for some c1 2
(�1; 0], are considerably below the power envelope for other values of c1 if the
true likelihood is used, i.e., if q(�) = � log f(�). This sharply contrasts with the
�ndings for the Gaussian case, see Elliott et al. (1996). Therefore, there appears
to be room for further improvement of the usual testing procedures in (7) and (8)
by allowing the quasi-likelihood used in there to di�er from the true likelihood.

We formalize this as follows. Given Theorem 1, we consider statistics that can
be written in the form

T (R;S; �; �q; �q; c; �q ; �"):(9)

For example, the Studentized t statistic in (7) can be written as

tq = sgn(�q)
�qRp
S

+ �
q
1� �2q +

j�q j�"
p
S

�q
c+ op(1);(10)

while the normalized autocorrelation equals

n � (�̂ � 1) =
�q

�"�q

�qR+ �
q
(1� �2q)S

S
+ c+ op(1);(11)

see Cox and Llatas (1991), Lucas (1995), and Rothenberg and Stock (1997). For
a given statistic T , we now want to maximize

P[T (R;S; �; �q; �q ; c1; �q ; �") 2 T ];(12)

subject to

P[T (R;S; �; �q; �q ; 0; �q; �") 2 T ] = �;(13)

for some �xed level of the test �, where T is the critical region of the test.
Usually, T is of the form (�1; �] for some �, see for example the two statistics
in (10) and (11). The optimization of (12){(13) is carried out with respect to the
log-quasi-density q(�).
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Note that q(�) does not enter the equations (12) and (13) directly. Only q0

enters through �q and �q , while q
00 enters through �q . This allows us to simplify

the optimization problem by optimizing with respect to q0 rather than q under the
additional constraint that �q = 1. The latter constraint is a simple normalization
constraint which reduces the complexity of the problem without a�ecting the
resulting optimal choice of the estimator. This is easily seen by noting that the
QML estimator is de�ned by the �rst-order condition

nX
i=1

q0(yi � �̂yi�1) = 0:

The estimator, therefore, does not change if q0 is multiplied by a constant ��1q .
The Lagrangian of the optimization problem now becomes

max
q0

P
�(�q ; c; �q; �"; �0) + �0�� �1E [q

0 ("i)] + �2(1� �q);(14)

with �i the Lagrange multipliers of the appropriate constraints, and

P
�(�q ; c; �q ; �"; �0) = P[T (R;S; �; �q; �q; c; �q ; �") 2 T ] �

�0P[T (R;S; �; �q; �q; 0; �q ; �") 2 T ]:

The �rst-order conditions of (14) are given by the Euler-Lagrange equations

0 =
�q"f � �q�"q

0f
�"�2q

� @

@�q
P
�(�q ; c; �q; �"; �0) +(15)

q0f
�q

� @

@�q
P
�(�q ; c; �q ; �"; �0)� �1f + �2f

0;

� = P(T (R;S; �; �q; 1; 0; �q; �") 2 T );(16)

0 = E [q0 ("i)];(17)

1 = �q :(18)

Integrating (16) and using (17) and E ["i ] = 0, we obtain �1 = 0. It is then easy
to see from (16) that the optimal q0 must be of the form

q0(") = m1 � "�m2 � I�1f 0(")=f(");(19)

with information I � E [(f 0 (")=f("))2], such that the optimal quasi-score q0(")
is a linear combination of the Gaussian quasi-score and the true likelihood score
with weights m1 and m2, respectively. As mentioned earlier, a comparable result
was obtained by Cox and Llatas (1991) using a minimum MSE criterion rather
than maximum power.

Using (18), (19), and the information matrix equality, we obtain

m1 �m2I�1E [d2 log f(")=d"2] = m1 +m2 = 1:(20)
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Note that (17) is trivially satis�ed by (19). So instead of maximizing over a
function space (with respect to q0), we can do the much simpler maximization
with respect to the scalar m1. Using (19), we also obtain:

~�2q � �2q=�
2
" = m2

1 + 2m1m2
~I�1 +m2

2
~I�1 = m2

1(1� ~I�1) + ~I�1;(21)

and

�q = [m1(~I � 1) + 1]=

q
~I � (m2

1(
~I � 1) + 1);(22)

where ~I = �2"I � 1 with equality only for the normal density, see Rustagi (1976).

For the remainder of this paper, we focus on the Studentized t statistic and the
normalized autocorrelation as test statistics forH0 : � = 1. For both of these, the
critical region T is of the form (�1; �]. Because � is symmetrically distributed,
we can assume without loss of generality that these statistics are monotonically
increasing in �, except at �q = 1. Also note that the Studentized t statistic and
normalized autocorrelation coe�cient only depend on ~�q instead of �q and �" sep-
arately, see (10) and (11). It is therefore possible to de�ne T�1� (R;S; �; �q; c; ~�q)
as the upper endpoint of the region T�1(R;S; T ; �q ; 1; c; �q; �"), where T�1(�)
is the inverse of the statistic with respect to �. If we further de�ne hc(r; s) as
the density of (R;S) for a given value of c, the �rst order conditions of the
maximization problem simplify to�

(1�m1)

m2
1(
~I � 1) + 1

@

@�q
+m1

@

@~�q

�
�
Z Z �

�(T�1� (r; s; �; �q ; c1; ~�q))�(23)

�0�(T
�1
� (r; s; �; �q; 0; ~�q))

�
� hc(r; s)drds = 0;

Z Z
�(T�1� (r; s; �; �q; 0; ~�q))h0(r; s)drds = �;(24)

where

T�1� (r; s; �; �q; c; ~�q) =
�� �qr=

p
s� c

p
s=~�qq

1� �2q

(25)

for the Studentized t statistic, and

T�1� (r; s; �; �q ; c; ~�q) =
��qr=

p
s+ (�� c)

p
s=~�qq

1� �2q

(26)

for the normalized autocorrelation. It is clear that in order to solve (23){(24),
we need a way to accurately evaluate the integral. More speci�cally, we need an
expression for the density hc(r; s). This is the subject of the next section.



8 K.M. ABADIR AND A. LUCAS

3.. Exact distributions and their large-c approximations. It is useful
to obtain an explicit expression for the joint density hc(r; s). Not only can it
help us obtain the desired optimal weights m1 for our problem, but also Perron
(1989,1991) has shown how numerical evaluation of the marginal distribution
for R=S can be useful to approximate accurately the power function of the nor-
malized least-squares estimator of � in the standard Gaussian case. The power
function for the Studentized t statistic would be based on R=

p
S, see (10). Its

computation would have involved triple integration (two of them in the com-
plex space) in the standard Gaussian case, and would have required two more
integrals (�ve in all) in our case. For this reason, neither case has been derived
explicitly in the literature.

Let

r+ � r + cs+
1

2
2 R+:

We then have the following result.

Theorem 2. The joint density function of
�R 1

0
Uc (�) dB (�) ;

R 1
0
Uc (�)

2
d�
�

is

hc (r; s) = exp

�
cr +

c2

2
s

�
h0 (r + cs; s)(27)

=
exp

h
c
�
r+ � 1

2

�
� r2+

2s
� c2s

2

i
s
5
4
p
�r+

1X
j=0

�
j � 1

2

j

�
�

exp

�
�
�
2j +

1

2

�
r+

s
�
�
2j2 + j +

1

8

�
1

s

�
jX

`=0

�
j
`

�
(�2r+=

p
s)

`

�
�
`+ 1

2

� D+

`+ 3
2

�
r+ + 2j + 1

2p
s

�
;

where D+
� (z) � exp(z2=4)D�(z), and D�(z) is a parabolic cylinder function, see

Erd�elyi (1953) for details.

This expansion is very e�cient. The sum in j typically converges extremely
rapidly (in one or two terms) because of the exponential factor in �j2, while the
sum in ` is bounded by j. For more details on computational issues , see Abadir
(1992,1995). E�cient power series for D+ have been derived in Abadir (1993),
and are summarized in Abadir (1999).

We are also interested in characterizing how this density behaves as (r; s)
tend to extreme values, especially since we wish to assess the power functions as
c varies, both exactly and approximately. In particular we will be using the fact
in Phillips (1987) that, as c! �1,

p
�2cR =

p
�2c

Z 1

0

Uc (�) dB (�)
w! N (0; 1)(28)
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�2cS = �2c
Z 1

0

Uc (�)
2
d�

p! 1;(29)

which will indicate how the density behaves in the case of distant stable alter-
natives. Note that (29) implies that S becomes ancillary for � as c ! �1, in
which case the statistical curvature (and the inferential complications it causes)
of this exponential-family process will vanish. We have the following corollary.

Corollary 1. The asymptotic expansion of hc (r; s) is given by:

( 12+r+)
3
2

�s2
p
r+

exp
h
c
�
r+ � 1

2

�
� c2s

2
� 4r2++4r++1

8s

i
;

when either r+=s; 1=s!1;

1
�

q
3

sr+
exp

h
� c

2
+ (c� 1) r+ � 6+c2

2
s
i
;

when both r+=s; 1=s! 0;

1

�s
5
4
p
r+

exp
h
� c

2
� c2s

2

iP1
j=0

�
j � 1

2

j

�
D+

3
2

�
2j+ 1

2p
s

�
exp

�
�
�
2j2 + j + 1

8

�
1
s

�
;

when r+ ! 0.

We have included all cases for the sake of completeness, but the part that
will be most relevant for our subsequent manipulations as c ! �1 is the �rst
expression of the corollary, as is clear from (28) and (29). Asymptotic expansions,
such as the ones in this corollary and the next, are usable for large but not
necessarily in�nite values of the parameters.

We now need to obtain the asymptotic power functions of the Studentized t
statistic and the normalized autocorrelation as

�t (�; c; �q; ~�q) �
R R
R2
+

�

0
@�� �qr=

p
s� c

p
s=~�qq

1� �2q

1
Ahc (r; s) dsdr+;

and

�� (�; c; �q; ~�q) �
R R
R2
+

�

0
@(�� c)

p
s=~�q � �qr=

p
sq

1� �2q

1
Ahc (r; s) dsdr+;

respectively. Since we now have an e�cient explicit formula for hc (r; s), this can
be done to any required numerical precision by double numerical integration.
We do so in our next section on numerical results. Here, we consider one further
manipulation, namely how the two �: (�; c; �q ; ~�q) behave as c! �1.
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Corollary 2. Let

 �
��
1� �2q

�
~�2q + (1� �q~�q)

2
� 1
4

=
�
1� ~I�1

� 1
4
p
jm1 � 1j;

c �
��

1� �2q
�
~�2q +

�
1� �q~�q �

�

c

�2� 1
4

� ;

and Ref�g denote the real part of an expression. As c! �1, the complement of

the power function of the t statistic, 1��t (�; c; �q ; ~�q), is

Re

8<
: exp [jcj]
j�q j

q
2�2q + 2 j�qj (�q � ~�q)� 1

�

 
� (sgn (�q) + 1)

s
j�qcj
~�q

� �

!

+

p
2
�
1� �2q

�
q

~�q � �q +
�
1� 2�2q

�
2

�

0
@�~�q � 2

�
�q � 1


q
2
�
1� �2q

�
~�q

p
jcj � �q

1� �2q

1
A

exp

" 
2
�
1� �2q

�
~�q +

�
�2q � 2

�
2 +

(1� �q~�q)
2

2

!
jcj

4
�
1� �2q

�
~�q

#)
;

and that of the normalized autocorrelation, 1��� (�; c; �q; ~�q), is

Re

8>><
>>:
exp [jcj] �

��
sgn (��q) + sgn

�
�
c
� 1
��q j(��c)�qj

~�q

�
j�q j

r
2�2q + 2

��� �qc��c

��� ��1� �
c

�
�q � ~�q

�
� 1

+

p
2
�
1� �2q

�
cq

~�q +
�
�
c
� 1
�
�q +

�
1� 2�2q

�
2c

�

0
@ �

c
+
�
~�q � 2c

�
�q � 1

c

q
2
�
1� �2q

�
~�q

p
jcj

1
A

exp

" 
2
�
1� �2q

�
~�q +

�
�2q � 2

�
2c +

�
1� �q~�q � �

c

�2
2c

!
jcj

4
�
1� �2q

�
~�q

#)
:

If required, one may approximate these expressions further by using

� (z) � 1z2R+
� � (z)

z
, as z ! �1;

where 1z2R+
= 1 for z 2 R+, and zero otherwise. Taking the real part of

the sum of the two expressions involving � (�) switches from one of the two
components to the other one, depending on some parameter combinations. This
discontinuity in the parameter space is typical of asymptotic expansions, and is
known in Complex Analysis as Stokes' phenomenon. Note that �q~�q is a weighted

average of the estimator's relative precision ~I�1 and its value of 1 under a pseudo-
Gaussian likelihood, namely

�q~�q = m1 + (1�m1) ~I�1;
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while  is a measure of deviation of ~I from 1, and of m1 from 1.

The corollary points out that the asymptotic expansion of 1��t (�; c; �q; ~�q)
is a shifted and rescaled Normal when viewed as a function of � only, which is
not generally the case for 1��� (�; c; �q; ~�q). However, as c! �1, the inuence
of � diminishes relative to that of c, and both power functions share the same
expansion to �rst order. This is not surprising since S is asymptotically ancillary
for � as c! �1 (see (29)) and the two statistics di�er stochastically only by a
factor of

p
S, see (10) and (11).

4.. Results. Given the exact and approximate distributional results of
the previous section, we can now proceed by computing numerically the optimal
quasi-likelihood. The integrals in (23) and (24) are evaluated using Gaussian
quadrature. In order to mitigate potential numerical errors, we use the following
change of variables:(

~r = 1� exp(� 4

q
r + cs+ 1

2
)

~s = 1� exp(�s)
,
�
r = [log(1� ~r)]4 � 1

2
+ c log(1� ~s)

s = � log(1� ~s)
(30)

giving rise to the Jacobian 4[� log(1� ~r)]3(1� ~s)�1(1� ~r)�1. This transforma-
tion accomplishes two things. First, Corollary 1 shows that the density hc(r; s)
is O(1=

p
r + cs+ 0:5) for r ! �(cs + 0:5). This might be a source for numeri-

cal instabilities when integrating numerically near r = �(cs + 0:5). Taking the
4th root ( 4

p
r + cs+ 0:5) ensures that the density in the transformed variables

(~r; ~s) goes to zero as r ! �(cs + 0:5). Secondly, the transformation maps the
integration quadrant ( 4

p
r + cs+ 0:5; s) 2 R+ � R+ into the unit square, thus

preventing potential errors due to a cut-o� of the tails over an unbounded region
of integration.

Figures 1 and 2 plot several objective functions in m1-space, in order to illus-
trate the power optimization exercise. The top two graphs give the power of the
test statistics for di�erent values of c and ~I . In the lower two graphs, power is
rescaled using the inverse normal cdf. This seems a sensible approach given the
asymptotic expansions in Section 3. First note in the upper panels that the power
function becomes increasingly at for increasing values of jcj and ~I. Computing
the optimal value ofm1 from a power perspective is, therefore, only possible if we
have analytic and highly accurate expressions for the power function as derived
in the previous section. More conventional simulation-based approaches would
be hampered by simulation errors, given the high precision required to deal with
our almost-at objective function. A second thing to note in Figures 1 and 2
is the adequacy of the large-c expansion derived in Corollary 2. For increasing
values of jcj, the match between the power based on numerical integration and
on the asymptotic (c ! �1) approximation becomes better. This is especially
clear if we use a di�erent scale on the vertical axis, as is done in the lower graphs.
Also, the location of the optimal values of m1 from both formulae (exact and
approximate) are very close for large negative values of c. As discussed at the
end of the previous section, by de�nition, asymptotic expansions do not provide
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Fig. 1. Objective function for Studentized t statistic

This �gure contains the power of the Studentized t statistic for testing the unit root null at a 5%
signi�cance level. Power is displayed as a function of the Gaussian weight m1 in the quasi score
q0. The weight of the true likelihood score in q0 is 1�m1. The parameter c gives the distance
between the stable alternative and the null of the unit root, while I = ~I � 1 is an information
measure of non-normality (I = 1 for the Gaussian case). The top two graphs have power on
the vertical axis, while the lower two graphs have the inverse standard normal cdf of power on
the vertical axis. Finally, the curves labeled (n) are obtained by numerical integration of the
formulae in Theorem 2, while the curves labeled (a) are based on the asymptotic expansion in
Corollary 2.

uniformly good approximations, and this is reected in our graphs for some val-
ues of m1. Note, however, that for large jcj the expansion of Corollary 2 is still
adequate in the region which is of interest to us in this context, i.e., near the
optimum of the power function.

The results on the optimal values of m1 for several values of ~I and c are
displayed in Figure 3 for the Studentized t statistic and the normalized auto-
correlation. For comparison, the optimal values of m1 from a minimum MSE
perspective are also provided using the approximations given in Cox and Llatas
(1991). First note that the optimal m1 values from a power perspective take on
both positive and negative values (see the �rst two panels). By contrast, the
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Fig. 2. Objective function for normalized autocorrelation

This �gure contains the power of the normalized autocorrelation statistic for testing the unit
root null at a 5% signi�cance level. Power is displayed as a function of the Gaussian weight m1

in the quasi score q0. For a further description, see the explanatory note to Figure 1.

weights based on minimum MSE are uniformly negative. The point m1 where
the optimal weight crosses the horizontal axis denotes the point where the max-
imum likelihood estimator is optimal from a power perspective. A second point
to note is that the weights m1 in the Studentized t statistic for small values
of jcj are smaller than those for the normalized autocorrelation. Moreover, the
magnitude of the weights of Cox and Llatas is even smaller. The third strik-
ing feature is that the optimal weights we compute lie persistently above the
horizontal axis for distant alternatives. To corroborate this result, we use the
asymptotic expansion of Corollary 2 to compute the optimal value of m1 for
extremely distant alternatives. Using the symbolic computation package Maple
to obtain highly accurate (100 digits) approximations of the functions involved,
we obtain the optimal values m1 pictured in the lower-right graph in Figure 3.
The weights clearly decrease as one would expect, albeit at a very slow rate. Also
note from Figure 1 that the power function is very close to unity for these distant
alternatives and that the objective function is very at. Precise computations of
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Fig. 3. Optimal weights of Gaussian quasi score

This �gure contains the optimal weights m1 of the Gaussian quasi score in q0. The upper-left
and upper-right panels give the results for maximum power using the normalized autocorrela-
tion and the Studentized t statistic, respectively. The lower-left panel gives the optimal weights
from a minimum MSE perspective, see Cox and Llatas (1991). Finally, the lower-right graph
gives the optimal m1 for the Studentized t statistic and a maximum power objective for dis-
tant alternatives using the asymptotic expansion of Corollary 2. The variable I � ~I � 1 is an
information measure of non-normality (I = 1 for the Gaussian case).

the optimal m1 for c < �15 are therefore only possible given the exact explicit
expressions of Section 3.

We now turn to a discussion on the power behavior of the alternative testing
procedures. The results are given in Figures 4 and 5. First we discuss the Studen-

tized t statistic. For local alternatives (c > �4) all tests procedures have power
close to the power envelope, see the top graphs. The percentage power loss with
respect to the envelope has its maximum of around 13 to 14 percent for these
local alternatives as well. Clearly, the optimal weights from the two top panels
in our previous Figure 3 result in the smallest power loss with respect to the en-
velope. Two interesting features remain. First, even for distant alternatives one
can gain power by choosing a quasi-likelihood di�erent from the true likelihood.
This is seen by the Abadir-Lucas curve in the top panels lying closer to the power
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Fig. 4. Optimality results for the Studentized t statistic

This �gure contains the inverse normal c.d.f. of the power of the Studentized t statistic using
the optimal weights m1 from Figure 3. The Abadir-Lucas weight is that from the upper graphs
in Figure 3. The Cox-Llatas weight m1 is also given in Figure 3. The maximum likelihood
estimator is given by m1 � 0. The lower graphs in the �gure present the percentage power loss
with respect to the power envelope. Again, I = ~I measures the non-normality, see the note to
Figure 3.

envelope than the curves for the maximum likelihood estimator. Second, for val-
ues of c close to zero, the Studentized t statistic based on the weights of Cox
and Llatas (minimum MSE) performs better than that based on the maximum
likelihood estimator. For distant alternatives, however, the maximum likelihood
approach dominates the Cox-Llatas one. Also note that both the Cox-Llatas and
the maximum likelihood approach reveal a nonmonotonic percentage power loss
for the Studentized t statistic.

For the normalized autocorrelation, the results are qualitatively similar.
Again, the Abadir-Lucas curve in the upper panel lies closer to the power
envelope than the maximum likelihood curve. The percentage power loss in the
lower panels is again nonmonotonic. The second peak, however, is hardly visible
due to the magnitude of the power loss for alternatives c close to zero. For the
maximum likelihood, these power losses can amount from 35 up to 45 percent
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Fig. 5. Optimality results for the normalized autocorrelation

This �gure contains similar information as Figure 4, but now for the normalized autocorrelation
instead of the Studentized t statistic.

for c between �1 and 0. Also note that as expected the maximum likelihood
approach dominates the approach of Cox-Llatas for jcj su�ciently large, while
the reverse holds for c su�ciently close to 0.

5.. Concluding remarks. In this paper we have quanti�ed the di�erence
between optimal estimators from a minimum MSE and a maximum power per-
spective for nearly non-stationary, non-Gaussian AR models. We have based our
results on new explicit expressions for the joint density of the su�cient func-
tionals of Ornstein-Uhlenbeck processes. This has allowed us to obtain highly
accurate numerical results that could not have been obtained using traditional
simulation techniques. The enhanced accuracy has allowed us to optimize dif-
ferent criterion functions based on MSE or on power against the unit root null
over the space of possible quasi-likelihoods. In all cases considered, the optimal
quasi-likelihood-score was a linear combination of the Gaussian quasi-score and
the true likelihood-score. The weights, however, depended very much on the cri-
terion chosen. In particular, minimum MSE and maximum power gave rise to
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markedly di�erent weights, illustrating how one should be additionally careful
in this time series setting when choosing between di�erent reasonable objectives
for the design of optimal statistical procedures.

Appendix

Throughout, the change of a variable of integration which maps u 7! v � g (u) will be
written in the inverse-mapping form u $ g

�1 (v), whereby u is replaced by g
�1 (v) in the

integrand.
Proof of Theorem 2. For c = 0, the joint density function h0 (r; s) has been derived in Abadir
(1992, 1995) by inverting the joint characterisitic function of�Z

1

0

B (�) dB (�) ;

Z
1

0

B (�)2 d�

�
;

which was in White (1958). For general c, we can use the same procedure to invert the charac-
teristic function given in Phillips (1987) and in Perron (1989) for the relevant functionals. It is
shorter, however, to use exponential family and su�ciency arguments [e.g. see Lehmann (1986,
Ch.2)] for this purpose. In the asymptotic context we are dealing with, Girsanov's (1960) theo-
rem [see also Cameron and Martin (1944, 1945)] implies that the di�usion Uc (�) is a Brownian
motion with respect to another measure. The Radon-Nikodym derivative of the probability
measure for Uc with respect to that for B is

exp

�
c

Z
1

0

Uc (�) dB (�)� c2

2

Z
1

0

Uc (�)
2
d�

�
;

and we have that�Z
1

0

Uc (�) dB (�) ;

Z
1

0

Uc (�)
2
d�

�
=

�Z
1

0

Uc (�) dUc (�)� c

Z
1

0

Uc (�)
2
d�;

Z
1

0

Uc (�)
2
d�

�

implies that the translation from B to Uc requires the inverse-mapping substitution (r; s) $
(r + cs; s). Accordingly, Girsanov's transformation theorem gives

hc (r; s) = exp

�
cr +

c
2

2
s

�
h0 (r + cs; s) :

Substituting for the known functional form h0 (�; �) gives the stated result. �

Proof of Corollary 1. The proof follows from Theorem 2, by the methods developed in Abadir
(1992,1995). �

Lemma 1. For Re p1 2 R+ and Re p2 2 R+,Z
R+

s
��1 (s+ a)� exp

�
�p1s�

p2

s
+ p3

p
s+

p4p
s

�
ds

�
r

�

p2

�
p2

p1

� �
2
+
1
4
�r

p2

p1

+ a

��

exp

"
�2pp1p2 + p3

�
p2

p1

� 1
4

+ p4

�
p1

p2

� 1
4

#
:

Proof of Lemma 1. Applying the asymptotic expansion of the BesselK function to an integral
in Oberhettinger and Badii (1973, p.41), we haveZ

R+

s
��1 exp

h
�p1s�

p2

s

i
ds �

r
�

p2

�
p2

p1

� �
2
+
1
4

exp [�2pp1p2] :



18 K.M. ABADIR AND A. LUCAS

We can therefore writeZ
R+

s
��1 (s+ a)� exp

�
�p1s�

p2

s
+ p3

p
s+

p4p
s

�
ds

=
1X
i=0

�
�

i

�
a
��i

1X
j=0

p
j
3

j!

1X
k=0

p
k
4

k!

Z
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s
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h
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s
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�
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�
�
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��i

1X
j=0
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j
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+
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r
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� �
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+
1
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��
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"
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�
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� 1
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�
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� 1
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#

as required. �

Proof of Corollary 2. To obtain the required functions, we need

d�(�)

da1

=
exp

�
� c

2

�
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�
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�
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+
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;

where we have used a1; a2; a3 (none of which contains c asymptotically) to simplify the notation,
and rewritten D+ in terms of D�� (z) � exp[�z2=2]D+

� (z). For large c << 0, Corollary 1
shows that the leading term is the one for which j = ` = 0. Furthermore, (28) shows that
the transformations r+ $ r+=

p
jcj and s $ s= jcj would stabilize the integral as c changes.

Applying these transformations, we can expand D+ asymptotically by

D
+

� 1
2

(z) �
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� (z)
p
2�

D
�
� 1
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1
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4
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from an integral in Oberhettinger and Badii (1973, p.43). We now have a new D+ whose
argument is large but not necessarily positive as c! �1. Expanding D+ asymptotically then
integrating by means of our lemma,
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Since the approximation is for the tail area of the density d�(�) =da1, we need to integrate
over the tail to obtain 1��(�). Integrating with respect to a1 by means of
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we get
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1� �2q
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gives the stated result for the Studentized t statistic (� = �t), while
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~�q
q
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gives the result for the autocorrelation coe�cient (� = ��). �
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